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Abstract

We explore the performance of various artificial neural network
architectures, including a multilayer perceptron (MLP), Kolmogorov-
Arnold network (KAN), LSTM-GRU hybrid recursive neural network
(RNN) models, and a time-delay neural network (TDNN) for pric-
ing European call options. In this study, we attempt to leverage the
ability of supervised learning methods, such as ANNs, KANs, and
gradient-boosted decision trees, to approximate complex multivariate
functions in order to calibrate option prices based on past market data.
The motivation for using ANNs and KANs is the Universal Approx-
imation Theorem and Kolmogorov-Arnold Representation Theorem,
respectively. Specifically, we use S&P 500 (SPX) and NASDAQ 100
(NDX) index options traded during 2015-2023 with times to matu-
rity ranging from 15 days to over 4 years (OptionMetrics IvyDB US
dataset). Black & Scholes’s (BS) PDE [1] model’s performance in pric-
ing the same options compared to real data is used as a benchmark.
This model relies on strong assumptions, and it has been observed and
discussed in the literature that real data does not match its predic-
tions. Supervised learning methods are widely used as an alternative
for calibrating option prices due to some of the limitations of this
model. In our experiments, the BS model underperforms compared to
all of the others. Also, the best TDNN model outperforms the best
MLP model on all error metrics. We implement a simple self-attention
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mechanism to enhance the RNN models, significantly improving their
performance. The best-performing model overall is the LSTM-GRU
hybrid RNN model with attention. Also, the KAN model outper-
forms the TDNN and MLP models. We analyze the performance of
all models by ticker, moneyness category, and over/under/correctly-
priced percentage. Due to some of the errors being complimentary
in the sense of having opposite percent over-priced and under-priced
for some moneyness categories, it may be beneficial to investigate the
ensembling of the best models.

Key Words: European Call Option; Moneyness; Long-Short-Term-
Memory (LSTM); Gated-Recurrent-Unit (GRU); Recurrent Neural Network
(RNN); Time-Delay Neural Network (TDNN); Multilayer Perceptron (MLP);
Self-Attention; Adaptive Moment Estimation (Adam); Kolmogorov-Arnold
Representation Theorem (KART); Kolmogorov-Arnold Network (KAN)
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1 Problem Description & State Of The Art

Financial derivatives are contractual agreements between multiple parties,
the value of which is contingent upon the performance or characteristics of
a specified underlying asset (or a collection of such assets), such as stocks,
market indices, interest rates, commodity prices, exchange rates, or other
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benchmarks [2]. An option contract can be defined as a financial derivative
that gives the holder the right but not the obligation to buy (call) or sell
(put) an underlying asset at a specified price (strike = K) on the expira-
tion date (European style) or before it (American style). Options are traded
both in the over-the-counter market and through exchanges [3]. Purchasing
a European call option allows one to bet on the price of the underlying asset
rising since the predetermined strike price is subtracted from the terminal
price of the underlying in the payoff. Hence, in the context of a European
call option, the holder will rationally choose to exercise the option at the ma-
turity time t = T if the underlying asset’s price exceeds the strike price, i.e.,
when S(T ) > K. Under such circumstances, the option holder can acquire
the asset by paying the strike price K to the option writer, thereby securing
an asset valued at S(T ). The resultant profit for the holder is S(T ) − K,
as the asset can be immediately sold in the financial market at its current
value. Conversely, if the asset’s price at maturity S(T ) is less than the strike
price K, the option holder will opt not to exercise the option, rendering it
worthless [2]. In this scenario, the holder can purchase the asset directly
in the market for a price lower than K, making it irrational to utilize the
contractual right provided by the option[2]. Notably, the holder of a Eu-
ropean call option is not obligated to exercise the option if the underlying
asset underperforms. This flexibility allows the holder to avoid unfavorable
trades. However, the option seller, or writer, is contractually bound to fulfill
the terms of the option should the holder choose to exercise it [2].

A crucial aspect of what makes simple options attractive is their versa-
tility in constructing robust trading strategies and hedging positions. By
combining a collection of simple options contracts in creative ways, traders
can devise sophisticated strategies that optimize returns or mitigate risks.
Among the most popular strategies are the straddle, condor, butterfly, and
covered call. The straddle strategy involves purchasing both a call option
and a put option on the same underlying asset with the same strike price
and expiration date. This strategy benefits from significant price movements
in either direction, as profits from one option can offset the losses from the
other, making it an effective choice in highly volatile markets [4]. The con-
dor strategy, specifically the iron condor, is a more advanced approach that
involves selling an out-of-the-money put and an out-of-the-money call while
simultaneously buying a further out-of-the-money put and call. This results
in a strategy that profits when the underlying asset remains within a specific
price range, thus limiting potential losses but also capping the maximum
profit [3]. The butterfly spread is another neutral options strategy that com-
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bines both calls and puts to benefit from low volatility. It involves purchasing
a call (or put) at a lower strike, selling two calls (or puts) at a middle strike,
and purchasing another call (or put) at a higher strike price. The butter-
fly spread is designed to generate a profit when the underlying asset’s price
remains near the middle strike price [5]. Lastly, the covered call strategy
involves holding a long position in an underlying asset while simultaneously
selling a call option on the same asset. This strategy generates additional
income from the premium received for selling the call, and it is particularly
attractive in markets where the underlying asset is expected to experience
minimal price fluctuations [6].

These strategies demonstrate the potential to creatively use simple op-
tions contracts to achieve diverse investment objectives, whether to speculate
on price movements or to hedge position risk effectively. Since 1973, stan-
dardized options have been actively traded on regulated exchanges, while
other options are privately negotiated and sold by financial institutions to
their clients. A category of options known as exotic options exists, charac-
terized by complex payoff structures, which may involve multiple underlying
assets or FX rates. Aside from these complications, an exotic option may
contain path dependency, where the payoff is influenced not solely by the
asset price(s) at maturity S(T ) or at a specific time S(t) but also by the
asset’s price at multiple points in time. Unlike standard options, exotic op-
tions are typically not listed on regulated exchanges but are transacted over
the counter (OTC) [2]. This means they are customized and directly sold by
banks and other financial institutions to their counterparties [2].

In 1973, Fischer Black and Myron Scholes co-authored a paper on ar-
guably the most important option pricing model, which is now referred to
as the BS model in short. Based on several strong assumptions, they con-
structed a closed-form solution to a PDE describing the evolution of Euro-
pean style puts and calls. The PDE used by Black & Scholes is:

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
− rf = 0 (1)

Here, f is a function of the underlying asset’s price S, risk-free rate r,
volatility of the underlying asset σ, and time t. The BS formula for the price
of a vanilla European call option is:

f(t, S(t)) = StΦ (d1) −Ke−r(T −t)Φ (d2) (2)
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d1 =
log
(

St
K

)
+ (T − t)

(
r + σ2

2

)
σ
√
(T − t)

(3)

and

d2 = d1 − σ
√
(T − t) (4)

Here, T , is the expiration time, (T − t) is time-to-maturity, St is the
current price of the underlying, K is the strike price, and r, σ are as above.
Also, Φ is a cumulative distribution function of a zero-mean and standard
deviation 1 normal variable, meaning Φ(x) is the probability such that this
variable is less than or equal to x. The assumptions for the B-S model (as
described by J.C. Hull [3]) are:

1. No transaction costs or taxes

2. No riskless arbitrage can exist

3. No dividends or other cash flows are paid during the lifetime of the
security

4. Trading and hedging of security is continuous, with the asset’s liquidity
being guaranteed

5. Risk-free rate is constant for all maturities

6. Short selling is allowed without penalty or short rebate

7. Stock price follows Geometric Brownian motion with volatility of the
underlying asset being constant over the lifetime of the option. As
outlined in [2], a GBM process is described by the following Stochastic
Differential Equation (SDE):

dS(t) = µS(t) dt+ σS(t) dB(t), with S(t0) = S0 (5)

where B(t) is a standard Brownian motion, µ denotes the drift param-
eter (a constant and deterministic growth rate of the asset), and σ is
the constant volatility parameter. Equivalently, this can be expressed
in its integral form as:

S(t) = S0 +

∫ t

t0

µS(z) dz +

∫ t

t0

σS(z) dB(z) (6)
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This model for asset price dynamics is sometimes referred to as the
Samuelsen model [2].

Although the BS model is one of the most significant pieces of math-
ematical finance, earning its authors the 1997 Nobel Prize in Economics,
it has been widely criticized for not matching real market data. One of
the earliest works that undermined the model was published by Jackwerth
& Rubinstein in 1996 [7], showing that market data demonstrates skewed
stock price distributions that are rarely log-normal. This goes against the
BS model since it represents underlying asset prices with a log-normal dis-
tribution. A consequence of the BS model’s assumption that stock price
is log-normally distributed is that log returns are expected to be normally
distributed. However, multiple studies have demonstrated that log return
distributions are rarely normal, as real market data displays heavy-tailed
distributions [8]. The assumptions of constant volatility and interest rate
have also been criticized as being unrealistic [9]. Since its inception, the
BS model has seen many enhancements, but despite these continued im-
provements, one of the BS model’s persistent downfalls is its inability to
capture the volatility smile. The volatility smile is a pattern where the im-
plied volatility, inferred from market prices of options, varies with the strike
price and maturity, deviating from the constant volatility assumption of the
BS model [13, 14]. Specifically, as discussed above, the BS model assumes
that the volatility of the underlying asset remains constant over time, lead-
ing to a single implied volatility for all options on the same underlying asset.
However, empirical evidence shows that implied volatilities tend to increase
as options move away from the at-the-money (ATM) strike price, forming a
"smile" shape when plotted against strike prices [2].

Implied volatility, denoted as σimp, is the volatility value that, when in-
serted as a parameter into the Black-Scholes option pricing formula, repro-
duces the market-observed option price fmkt(K,T ) for a given strike price
K and maturity T . Mathematically, it is defined [2] as:

f(t0, S;K,T, σimp, r) = fmkt(K,T ) (7)

where t0 = 0. Here, f(t0, S;K,T, σimp, r) represents the theoretical op-
tion price calculated using the Black-Scholes model with the implied volatil-
ity σimp, which equates to the market price fmkt(K,T ) observed at time
t0 = 0. Thus, implied volatility is extracted by using a quoted option value
to recover a value for σ, which is possible since the B-S option price can be
written as 1-to-1 function of volatility. Specifically, since volatility is valid in

6



the range [ 0 , infinity), the function is restricted to this range. In fact, this
function is continuous and strictly increasing in this range and has a unique
solution via reasoning that relies on the absence of the arbitrage principle.
Hence, by analyzing the range where this function is convex (until a point
of inflection occurs), algorithms such as the Newton-Raphson method can
be used to estimate values of σ from the parameters S,K, T, r, and observed
option price f(t0, S;K,T, σimp, r) [2]. The need for such iterative methods
to solve for implied volatility further underscores the limitations of the BS
model.

The presence of a volatility smile indicates that market participants an-
ticipate different levels of volatility depending on the moneyness of the op-
tion. This phenomenon can be attributed to several factors, including mar-
ket expectations of future volatility, supply and demand imbalances, and the
heavy-tailed nature of asset return distributions, which the BS model fails
to account for [15]. In practice, the volatility smile is a significant depar-
ture from the theoretical underpinnings of the BS model and the concept
of implied volatility itself, as discussed in works such as [2], highlights the
discrepancy between the theoretical model and market reality. The volatility
smile also reflects the market’s perception of risk. For instance, higher im-
plied volatilities for out-of-the-money (OTM) options suggest that traders ex-
pect significant price movements, which are not captured by the BS model’s
simplistic assumptions. These expectations might be driven by anticipated
events, market sentiment, or historical data showing fat tails in the distribu-
tion of returns. Overall, the existence of the volatility smile is a key indicator
of the BS model’s limitations and has prompted the development of more
sophisticated models that better capture the complexities of real market be-
havior, such as stochastic volatility models [11, 12], local volatility models
[19, 21, 22], and jump-diffusion models [23, 24, 25]. Additionally, Lévy mod-
els, both finite and infinite activity [26, 27, 28, 29, 30], have been explored
for their ability to better model the heavy tails and skewness observed in
asset return distributions, as highlighted in [2].

Local volatility models, as introduced by Dupire [19] and further devel-
oped by Derman and Kani [21], have gained prominence as they allow for
precise calibration to market-observed implied volatilities. Unlike other mod-
els that require extensive calibration of open parameters, the local volatility
framework directly uses implied volatility data to match market prices of
European vanilla options, thereby effectively reproducing volatility skews
and smiles. This exact calibration is achieved without the need to optimize
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model parameters, making local volatility models particularly attractive for
pricing and risk management of derivative products [2]. Stochastic volatility
models, such as the Heston model [11], and jump-diffusion models, like those
proposed by Merton [23] and Kou [24], also provide more robust mechanisms
for capturing market behaviors that the Black-Scholes model fails to account
for, including jumps in asset prices and heavy tails in return distributions.
While these models are more flexible and can be fitted to option market
data, they often require intricate calibration processes to align model out-
puts with market prices. Moreover, the original Black-Scholes model has
been further extended with enhancements such as the inclusion of dividends
[10] and more intricate modeling of interest rate dynamics. Notable examples
include the Hull-White model, which integrates stochastic interest rates into
the Black-Scholes framework to enable the pricing of interest rate-sensitive
derivatives [20], and the Black-Derman-Toy model, which incorporates in-
terest rate modeling to account for their effects on bond option pricing [31].
Additionally, the Heath-Jarrow-Morton (HJM) framework provides a com-
prehensive approach for modeling the evolution of interest rates, significantly
broadening the applicability of the original Black-Scholes model in financial
markets [32].

2 Derivation of Black-Scholes PDE

The following derivation is based on the detailed discussion and proof by
Oosterlee & Grzelak in their widely recommended textbook Mathematical
Modeling and Computation in Finance [2]. An outline of the proof of the so-
lution via the Feynman-Kac theorem is also provided in their work, but the
proof is omitted in this paper. Other alternative solution methods include
MC simulation, Fourier transform or characteristic function methods, dis-
cretization of the PDE via finite differences, and pricing via the martingale
approach, which is also discussed by Oosterlee & Grzelak.

2.1 Itô’s Lemma and Itô Process

Itô’s lemma, named after the Japanese mathematician Kiyoshi Itô, is a cor-
nerstone in the study of stochastic processes and stochastic calculus. It
provides the necessary framework for working with increments of Brownian
motion dB(t) as dt → 0, functioning analogously to a Taylor expansion when
handling deterministic variables and functions. One can derive solutions to
SDEs and formulate pricing stochastic partial differential equations (SPDEs)
for various financial derivative products through Ito’s lemma. Also, it acts
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as a theoretical underpinning for many results in stochastic optimal control
and reinforcement learning.

First, we need to consider the following Stochastic Differential Equation
(SDE) as described by Oosterlee and Grzelak [2], which corresponds to the
Itô process X(t):

dX(t) = µ̄(t,X(t))dt+ σ̄(t,X(t))dB(t), with X(t0) = X0, (8)

where µ̄(t, x) and σ̄(t, x) represent the drift and volatility functions, re-
spectively. These functions are required to satisfy the following Lipschitz
continuity conditions, which ensure that the drift and volatility functions do
not exhibit rapid growth:

|µ̄(t, x) − µ̄(t, y)|2 + |σ̄(t, x) − σ̄(t, y)|2 ≤ K1|x− y|2 (9)

|µ̄(t, x)|2 + |σ̄(t, x)|2 ≤ K2(1 + |x|2) (10)

for some constants K1,K2 ∈ R+ and any x and y in R. When these
conditions are met, it follows with probability one that a continuous and
adapted solution to this SDE exists, satisfying sup0≤t≤T E[X2(t)] < ∞ [2].
Now, consider the case where a process X(t) follows the Itô dynamics out-
lined above, where the drift µ̄(t,X(t)) and diffusion σ̄(t,X(t)) satisfy the
previously mentioned Lipschitz conditions. If we define a function g(t,X) of
the stochastic process X = X(t) and time t, and assume that g(t,X) has
continuous partial derivatives, namely ∂g/∂X, ∂2g/∂X2, and ∂g/∂t, then a
new stochastic variable Y (t) := g(t,X) can be shown to also follow an Itô
process [2]. This process is governed by the same Brownian motion B(t).
The result of the lemma, which makes it extremely useful for computation,
is that the SPDE for Y (t) is then given by:

dY (t) =

(
∂g

∂t
+ µ̄(t,X)

∂g

∂X
+

1

2

∂2g

∂X2
σ̄2(t,X)

)
dt+

∂g

∂X
σ̄(t,X)dB(t). (11)

Equivalently, Itô’s lemma can also be expressed in its integral form as
follows:

Y (t) = Y0 +

∫ t

t0

(
∂g

∂z
+ µ̄(z,X)

∂g

∂X
+

1

2

∂2g

∂X2
σ̄2(z,X)

)
dz (12)

+

∫ t

t0

∂g

∂X
σ̄(z,X)dB(z)
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This integral formulation can be particularly useful for deriving solu-
tions to various SPDEs and evaluating complex integrals. As seen above,
Itô’s lemma is analogous to the Taylor expansion in standard calculus but
includes an additional Itô correction term to account for the stochastic na-
ture of the process. Specifically, the Itô correction term is the 1

2
∂2g
∂X2 σ̄

2(t,X)
component in the drift term, which arises due to the quadratic variation of
the Brownian motion. Typically, any higher-order terms are neglected under
the convention that their contribution is insignificant in the limit as dt → 0
[2].

2.2 Black-Scholes PDE & Solution

Building on the assumption outlined in section 1 of this paper, Black and
Scholes derived their seminal partial differential equation (PDE) for the val-
uation of European options [1]. Namely, for this derivation, we assume a
constant interest rate r and volatility σ. The market is considered liquid,
meaning assets can be traded continuously and in arbitrary quantities. Ad-
ditionally, short-selling is permitted without penalty, transaction costs and
dividend payments are neglected, and we assume the absence of any bid-ask
spread in stock/index and option prices. A fundamental task in quantitative
finance is determining the fair value of a financial derivative at the time of
sale, denoted as t = t0. More generally, we seek to determine the value
f(t, S) for any time t ≥ t0 and to manage the associated risk incurred when
an option writer must trade the asset S(T ) at maturity T , given a fixed
strike price K. This derivation of the BS PDE is centered around the con-
cept of a replicating portfolio, which is designed to mirror the cash flows of
the financial derivative. This portfolio can be static or dynamic, with the
latter requiring periodic rebalancing based on new market information. We
will follow the approach in [2], where a dynamic delta hedging strategy is
employed, and the portfolio is continuously adjusted rather than at discrete
rebalancing times. To begin, note that the underlying asset’s stochastic pro-
cess is assumed to be a GBM with constant volatility, which has the following
aforementioned SDE under the real-world measure P:

dS(t) = µS(t)dt+ σS(t)dBP(t)

Given that the option price f(t, S) is a function of both time t and
the stochastic process S(t), we start by applying Itô’s lemma to derive its
dynamics:
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df(t, S) =
∂f

∂t
dt+

∂f

∂S
dS +

1

2

∂2f

∂S2
(dS)2 (13)

Then, we substitute the SDE for dS(t) into the Itô expansion above,
starting with the first-order terms:

df(t, S) =
∂f

∂t
dt+

∂f

∂S
(µSdt+ σSdBP(t)) +

1

2

∂2f

∂S2
(dS)2

Expanding further:

df(t, S) =
∂f

∂t
dt+ µS

∂f

∂S
dt+ σS

∂f

∂S
dBP(t) +

1

2

∂2f

∂S2
(dS)2

Next, we compute the second-order term (dS)2, but first, we outline some
conventions.

2.2.1 Box Calculus Conventions for Itô Calculus

In Itô calculus, the algebra used to handle the stochastic terms includes
special rules for the manipulation of the differentials dt and dBt and terms
involving their products. In essence, we can neglect higher-order terms like
(dt)2 and dtdBP(t), since they become insignificant as dt → 0. The key rules
are:

dt · dt = 0, dt · dBt = 0, and dBt · dBt = dt (14)

For instance, when expanding the product of two differentials, say (idt+
jdBt) and (αdt+βdBt), the following computation applies given these rules:

(idt+ jdBt) · (αdt+ βdBt) =

iαdt · dt+ iβdt · dBt + jαdBt · dt+ jβdBt · dBt = jβdt

Which gives the useful rule:

(idt+ jdBt) · (αdt+ βdBt) = jβdt (15)

These conventions are crucial for the correct manipulation and simplifi-
cation of stochastic differential equations in the context of Itô calculus and
will be useful in simplifying the second-order term (dS)2. Specifically, we
get the following after expanding:

(dS)2 = (µSdt+σSdBP(t))2 = µ2S2(dt)2+2µσS2dtdBP(t)+σ2S2(dBP(t))2
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Then, the only term that remains after applying these Box calculus rules
is

(dS)2 = σ2S2(dBP(t))2 = σ2S2dt (16)

which is simply an example of the aforementioned rule for multiplying
two differentials with j = β = σS. Now, substituting this back into our
equation for df(t, S), we get:

df(t, S) =
∂f

∂t
dt+ µS

∂f

∂S
dt+ σS

∂f

∂S
dBP(t) +

1

2

∂2f

∂S2
σ2S2dt.

Finally, combining all terms with dt, we arrive at the following expression:

df(t, S) =

(
∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2

)
dt+ σS

∂f

∂S
dBP(t) (17)

Next, we construct a replicating portfolio Π(t, S), consisting of a long
(i.e., buy) position in one example of the option (with value f(t, S)) and a
short (i.e., sell) position of size ∆ in the stock/index:

Π(t, S) = f(t, S) − ∆S(t). (18)

This portfolio must hedge the risk, meaning the stochastic component
governed by BP(t) should be eliminated. To this end, we calculate the change
in the portfolio value using our existing expressions for df(t, S) and dS(t):

dΠ = df − ∆dS = (19)

[
∂f

∂t
+ µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
− ∆µS

]
dt+ σS

(
∂f

∂S
− ∆

)
dBP(t)

To ensure the portfolio’s value is risk-free/deterministic, we choose ∆
such that the dBP-terms cancel out:

∆ =
∂f

∂S
, (20)

Substituting this into the previous equation results in:

dΠ =

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
dt (21)

Importantly, the portfolio dynamics are now independent of the drift
term µ, relying solely on the volatility σ, which is responsible for encapsu-
lating the uncertainty in the future behavior of stock prices [2]. The portfolio
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value, Π(t, S), should grow at the risk-free rate r, comparable to an invest-
ment in a risk-free money savings account. This growth ensures that the
return on the portfolio matches that of a risk-free investment. We can rep-
resent a bank account A(t), where the amount of money grows at the rate
r, as follows:

A(t) = A(t0)e
r(t−t0)

where A(t0) is the initial amount in the bank account at time t0. The
differential form of the bank account growth is then given by:

dA = rAdt

For a portfolio amount Π ≡ Π(t, S), the change in the value of the
portfolio, assuming it grows at the same rate r, can then be expressed as:

dΠ = rΠ dt (22)

Here, r represents the constant interest rate corresponding to a risk-
free savings account, and the equation above highlights that the portfolio’s
value increases at the risk-free rate, consistent with a no-arbitrage condition.

Combining equations 18, 20, and 22, we get:

dΠ = r

(
f − S

∂f

∂S

)
dt (23)

Finally, equating equations 21 and 23, and simplifying, we arrive at the
Black-Scholes PDE (equation 1) for the option value f(t, S):

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
− rf = 0

This is a parabolic PDE, with the "+"-sign in front of the diffusion term
1
2σ

2S2 ∂2f
∂S2 , indicating the problem is well-posed when accompanied by a final

condition. As explained in [2], the final condition is usually provided by the
payoff function H(T, S), where f(T, S) = H(T, S) since the discount factor
reduces to 1 at time t = T. For a European vanilla call option, the payoff
has the following form:

H(T, S) := max(S(T ) −K, 0), (24)

and the value of the option is the continuously discounted expectation of
the payoff under the risk-neutral measure. This is outlined concisely in the
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statement of the Feynman-Kac theorem tailored to this problem presented
by Oosterlee & Grzelak [2]:

2.2.2 Feynman-Kac Theorem for BS PDE

Given the money-savings account, modeled by dA(t) = rA(t)dt, with con-
stant interest rate r, let f(t, S) be a sufficiently differentiable function of
time t and stock price S = S(t). Suppose that f(t, S) satisfies the following
partial differential equation, with general drift term, µ̄(t, S), and volatility
term, σ̄(t, S):

∂f

∂t
+ µ̄(t, S)

∂f

∂S
+

1

2
σ̄2(t, S)

∂2f

∂S2
− rf = 0, (25)

with a final condition given by f(T, S) = H(T, S). The solution f(t, S)
at any time t < T is then given by:

f(t, S) = e−r(T −t)EQ [H(T, S) | F(t)] =: A(t)EQ
[
H(T, S)

A(T )
| F(t)

]
, (26)

where the expectation is taken under the measure Q.

According to the Feynman-Kac theorem, the task of solving the Black-
Scholes partial differential equation (PDE), which emerges by selecting the
drift term µ̄(t, S) = rS and the diffusion term σ̄(t, S) = σS, can be refor-
mulated as the computation of the expected value of a discounted payoff
function under the Q-measure, as explained in [2].

2.2.3 Derivation of BS Formula

Hence, this final condition is necessary to solve the PDE, and the closed-form
solution in equations 2-4 of this paper can be recovered as follows:

f(t, S) = e−r(T −t)EQ [max(S(T ) −K, 0) | F(t)] (27)

This can be decomposed into two parts using indicator functions:

f(t, S) = (28)

e−r(T −t)EQ [S(T )1{S(T )>K} | F(t)
]

− e−r(T −t)EQ [K1{S(T )>K} | F(t)
]

Before proceeding, we review some valuable properties of Lognormal random
variables as discussed in [33].
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The Lognormal PDF and CDF

Firstly, we use the fact that if a random variable Y ∈ R follows the normal
distribution with mean µ and variance σ2, thenX = eY follows the lognormal
distribution with mean

E[X] = eµ+ 1
2

σ2

and variance
V ar[X] =

(
eσ2 − 1

)
e2µ+σ2

.

The pdf for X is

dFX(x) =
1

σx
√
2π

exp

(
−1

2

(
lnx− µ

σ

)2
)

(29)

and the cdf is

FX(x) = Φ

(
lnx− µ

σ

)
(30)

where Φ(y) = 1√
2π

∫ y
−∞ e− 1

2
t2dt is the standard normal cdf.

The Lognormal Conditional Expected Value

As in [33], we let the expected value of X conditional on X > x be LX(K) =
E[X|X > x]. For the lognormal distribution, using Equation 29, this be-
comes:

LX(K) =

∫ ∞

K

1

σ
√
2π
e− 1

2(
ln x−µ

σ )
2

dx (31)

Then, with the change of variable y = lnx, we get x = ey, dx = eydy, and
the Jacobian is ey. Hence we have

LX(K) =

∫ ∞

lnK

ey

σ
√
2π
e− 1

2(
y−µ

σ )
2

dy (32)

Combining terms and completing the square, the exponent is

− 1

2σ2
(
y2 − 2yµ+ µ2 − 2σ2y

)
= − 1

2σ2
(
y − (µ+ σ2)

)2
+ µ+

1

2
σ2.

Equation 32 becomes

LX(K) = exp

(
µ+

1

2
σ2
)

1

σ

∫ ∞

lnK

1√
2π

exp

(
−1

2

(
y − (µ+ σ2)

σ

)2
)
dy

(33)
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Consider the random variable X with pdf fX(x) and cdf FX(x), and
the scale-location transformation Y = σX + µ. It is easy to show that the
Jacobian is 1

σ , that the pdf for Y is fY (y) =
1
σfX

(y−µ
σ

)
and that the cdf is

FY (y) = FX

(y−µ
σ

)
. Hence, the integral in Equation 33 involves the scale-

location transformation of the standard normal cdf. Using the fact that
Φ(−x) = 1 − Φ(x) this implies that

LX(K) = exp

(
µ+

σ2

2

)
Φ

(
− lnK + µ+ σ2

σ

)
(34)

Now, we return to equation 28 and compute the two terms of conditional
expectations to recover equations 2-4. We use the same approach as in [33].

f(t, S) = e−r(T −t)EQ [S(T )1{S(T )>K} | F(t)
]

−

e−r(T −t)EQ [K1{S(T )>K} | F(t)
]
=

e−rτ

∫ ∞

K
STdF (ST ) − e−rτK

∫ ∞

K
dF (ST ) (35)

with
τ = (T − t)

To evaluate the two integrals, we make use of the result derived above that
under Q and at time t the terminal stock price ST follows the lognormal
distribution with mean lnSt +

(
r − σ2

2

)
τ and variance σ2τ , where τ is the

time to maturity.

S(T ) ∼ Lognormal
(
logSt +

(
r − σ2

2

)
(T − t), σ2(T − t)

)
(36)

The first integral uses the conditional expectation of ST | ST > K∫ ∞

K
STdF (ST ) = EQ[ST | ST > K] = LST

(K) (37)

This conditional expectation is, from Equation 34

LST
(K) = exp

(
lnSt +

(
r − σ2

2

)
τ +

σ2τ

2

)
× (38)

Φ

−
lnK + lnSt +

(
r − σ2

2

)
τ + σ2τ

σ
√
τ
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which simplifies to
LST

(K) = Ste
rτΦ(d1) (39)

so the first integral is

e−rτLST
(K) = e−rτSte

rτΦ(d1) = StΦ(d1)

Using Equation 30, the second integral in Equation 35 can be written

e−rτK

∫ ∞

K
dF (ST ) = e−rτK[1 − F (K)] =

e−rτK

1 − Φ

 lnK − lnSt −
(
r − σ2

2

)
τ

σ
√
τ

 (40)

= e−rτK[1 − Φ(−d2)] = e−rτKΦ(d2) (41)

Thus, combining the two terms, the equation simplifies to:

f(t, S) = StΦ(d1) − e−r(T −t)KΦ(d2)

where d1 and d2 are defined as:

d1 =
log
(

St
K

)
+ (T − t)

(
r + σ2

2

)
σ

√
T − t

d2 = d1 − σ
√
T − t

Therefore, we recover equations 2-4. These steps outline the derivation of the
Black-Scholes formula, where the terms correspond to the expected payoff
of the option under the risk-neutral measure Q, discounted to the present
time.

3 Motivation for Deep Learning & ANNs

The application of artificial neural networks (ANNs) to option pricing gained
traction in the 1990s. One of the pioneering studies, conducted by Malliaris
and Salchenberger [38], employed a multilayer perceptron (MLP) network
to estimate the prices of S&P 100 call options. Their findings demonstrated
that the neural network frequently outperformed the BS model in terms
of prediction accuracy, as measured by mean squared error (MSE). Since
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then, a diverse array of ANN architectures and deep learning methodologies
have been explored for option pricing, facilitated by the availability of vast
amounts of market data for model training. The Universal Approximation
Theorem [34, 35, 36] asserts that feed-forward neural networks possess the
capacity to approximate a vast class of functions through the learning of suit-
able weights. This foundational principle underpins the motivation behind
this study and similar efforts aimed at deriving the functional form of option
pricing via neural network training. A particularly influential contribution
in this domain was made by Hutchinson et al. [39], whose 1994 paper pre-
sented a nonparametric approach to pricing and hedging derivative securities
using learning networks. Their study focused on S&P 500 futures options
and similarly reported superior performance compared to the BS model. An
extensive review of such applications of neural networks to option pricing
and hedging is provided by Ruf and Wang [40], offering a comprehensive
overview of developments up to 2020. More recently, Ferraz [41] employed
the XGBoost algorithm, incorporating the parameters of the BS model as
inputs, to predict option prices. Furthermore, with advancements in the
field, even Physics-Informed Neural Networks (PINNs), originally devised to
solve partial differential equations (PDEs) in physics, have been adapted for
derivative pricing under the right conditions [43].

Moreover, research has also demonstrated the ability of neural networks
to capture the volatility smile. For instance, studies by Dugas et al. [44]
and Liu et al. [45] have employed deep learning architectures that effectively
model the volatility smile by capturing the complex non-linear relationships
between option prices and their determinants. Dugas et al. showed that
neural networks could better replicate market prices than the BS model,
particularly in scenarios where the implied volatility surface exhibits strong
curvature. Similarly, Liu et al. demonstrated that their model, incorporat-
ing volatility surface features, outperformed traditional models by captur-
ing the nuanced effects of asymmetry and tail risk in return distributions.
The inputs for the ANN or deep learning model can vary but tend to be
[37] some subset of the following: past underlying prices S, strike price K,
time-to-maturity (T − t), risk-free rate r, and volatility estimates. Inputs
such as volume, skewness, kurtosis, and others have also been used before.
There are multiple alternatives for producing the volatility estimates, with
some noteworthy ones being GARCH (generalized autoregressive conditional
heteroskedasticity) model volatility forecasts as done in [37] and historical
realized volatilities for different time scales. Hull describes the calculation of
realized volatility [3] from historic returns over a time period τ as:

18



σ̂τ =
1√
τ


√√√√ 1

n− 1

n∑
i=1

(ui − ū)2
)

(42)

Here, ui = ln
(

si
si−1

)
, n+ 1 is the number of observations, Si is the stock

price at the end of ith interval, and τ is the length of the time interval in
days. For example, for 1 year, the standard assumption is 252 trading days,
meaning τ = 252. As explained by T. Pohjonen: ’According to Merton
(1973), the return of the underlying asset is independent of the level of the
price of the underlying asset S such that it is also independent of the pricing
function f(·) of an option price C. Therefore, ANNs are trained to estimate
the price C divided by the strike K. This leads us to the functional form:

C

K
= f

(
S

K
,
K

K
, T − t, r, volatility estimates...

)
(43)

where some number of volatility estimates can be chosen [37]. Other
alternative approaches that are widely used in the literature include ap-
plying some form of smoothing (e.g., exponential) to the historic volatility
estimates, interpolating interest rate estimates from yield curves, and using
implied volatility estimates or modeling volatility as stochastic.

4 Method, Data Setup, & Expected Results

In this study, the aforementioned functional form is used with six volatil-
ity estimates of 20, 30, 40, 50, 65, and 90 days all annualized assuming 252
trading days in a year. Only historic volatility estimates are used with-
out implied or GARCH-fitted volatility. The focus is restricted to cash-
settled European-style call options for non-dividend paying indices of S&P
500 (SPX), Dow-Jones Index (DJX), and NASDAQ 100 (NDX). This choice
of options should ensure adherence to BS’s intended use case of European
exercise style and no dividends. A majority of studies tackling the prob-
lem of option pricing using ANNs and other deep learning methods focus
on S&P 500 options. Hence, this selection allows for a good comparison to
previous work as well as expanding the range of indices addressed through
the inclusion of NDX and DJX. As described in [37], options with time-
to-maturity < 15 days, S/K < 0.8 or S/K > 1.2, and C < S − Ke−r∗r

are excluded from consideration. Such options are low-priced, deep-in- or
deep-out-of-money, or not consistent with the no-arbitrage assumption (re-
spectively), meaning they could lead to large deviations between theoretical
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and observed prices, or they have little informational content as they are
rarely traded. Options are called at-the-money (ATM) when the strike price
is approximately equal to the price of the underlying (the ratio S/K is close
to 1 ) and in-the/out-of-the-money when K < S and K > S respectively.
The BS model is used as a benchmark with MAE (mean absolute error),
MSE (mean squared error), and RMSE (root mean squared error) metrics
calculated to check its performance on real market data. Then, different
multilayer perceptron architectures are tested with automatic hyperparame-
ter tuning by trying different architectures and combinations of parameters.
After the MLP NNs, XGBoost is tested with automatic parameter tuning.
Finally, after good versions of the MLP and XGBoost models are found, we
move on to the KAN, TDNN and RNN models.

4.1 Data Setup

The data for this study comes from the Wharton Research Data Services as
a subset of the (optionm_all) IvyDB US by OptionMetrics data set. The
subset collected is called df for simplicity. Specifically, it includes only Eu-
ropean calls for the three indices selected for the date range: 2015/05/13
2023/02/28. The data includes columns for date and exdate, which can be
used to calculate the time-to-expiration. The C column is calculated as the
average of the best bid and best offer prices for the call option as done in
[41]. The documentation of the data indicates that the ’strike price’ col-
umn is actually 1000 ∗ K, so the K column can be created by dividing this
’strike price’ by 1000. The ’target_C/K’ column is then found by dividing
the calculated C by the calculated K. Data for the underlying indices’ clos-
ing prices (daily) is collected from Yahoo Finance for the same date range.
The column ’ S ’ is created by filling in the rows of df with the appropri-
ate closing price for the underlying security based on the date and ticker
columns. After this, the ’ S ’ column is adjusted to be ’ S/K ’ by dividing
the old values by K. The columns ’sigma_w’ for w = {20, 30, 40, 50, 65, 90}
are added by the aforementioned method to include rolling window historic
volatility estimates. The 13-week US Treasury Bill rates (collected from Ya-
hoo Finance) are used for r without smoothing. Before filtering, this data
set includes 23,187,972 rows/observations. After filtering (df_filtered) and
removing rows that caused missing values after volatility estimate calcula-
tions, 3, 793, 804 rows remain with only two of the indices (SPX and NPX).
The remaining data consists of 56.1% and 43.9% observations of SPX and
NDX, respectively. This includes all dates available and all calls meeting
the filtering criteria. The data set is split with the first 70% samples being
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training and the remaining 30% being split evenly into validation and test
sets. Moreover, the ranges [0.95, 1.05], [0.8, 0.95), and (1.05, 1.2] are used
for ATM, OTM, and ITM moneyness ratio classification respectively. Also,
predictions within a 5% margin around the actual C/K ratio are classified
as being correctly priced, with predictions below and above this range being
labeled as under and overpriced, respectively. These ranges for ATMs and
correctly priced can potentially be narrowed to improve evaluation.

4.2 Expected Results

We anticipate slight differences in performance across the two remaining
tickers, with the best results expected for SPX, as it accounts for the largest
proportion of the training data after filtering. Additionally, we expect the
models to perform better on SPX than on NDX, given SPX’s more even
distribution of proportions by moneyness level, as well as its lower range
and standard deviation of call prices. Moreover, based on the literature, we
expect superior performance on in-the-money and out-of-the-money calls,
as these options are traded more frequently in practice compared to at-the-
money options.

5 Data Summary Statistics & Exploratory Plots

As seen in Figure 1, the data does not reflect the BS model’s assumption
that the risk-free rate is constant throughout the lifetime of an option. The
dashed red vertical lines (30 days apart) on this plot (showing interest rate
over time) clearly indicate that, even within 1-month periods, interest rate
fluctuates significantly. Moreover, as shown in Figure 2, for both tickers,
historical volatility estimates fluctuate a lot, with these changes being less
erratic for longer window sizes. Hence, the BS model’s assumption that
volatility is constant throughout the lifetime of an option is also not met.
These two observations are why methods such as smoothing are used in
the literature. As shown in Figure 3, log returns distributions for prices of
both indices are not exactly normal. Specifically, for both tickers, heavier
tails and a sharper peak can be seen, which resembles Laplace distributions.
Hence, the data does not demonstrate all three of these assumptions of the
BS model. As shown in Figure 4, the data has a larger proportion of OTM
than ITM calls for both tickers and significantly fewer ATM tickers for NDX
than SPX. Indeed, as mentioned before, options for the NDX ticker have a
much more uneven distribution of moneyness proportions. Out of the two
tickers, SPX has the largest proportion of ATM calls, and NDX has the
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largest proportion of OTM calls. In addition, Figure 4 also shows that NDX
calls are more expensive than SPX ones across all moneyness levels, and
NDX has a wider range and larger standard deviation of call prices. Aside
from the proportions of the data made up by each ticker, these observations
about moneyness also support the expectation that all models should do
better on the SPX ticker. The shortest time to expiration in the data is 15
days, with the longest being approximately 1800 days. However, as shown in
Figure 5, most of the calls in the data have < 60 time to expiration (days).
For both tickers, ITM calls have a larger price on average, with the second
largest being ATM calls and OTM calls being the cheapest. Also, Figure 5
shows that for calls with a longer time to expiration, the average price for
each moneyness category is higher.

6 Black-Scholes Model

The results of fitting the BS model are good - as expected. Still, it is note-
worthy that many studies in the literature achieved better results with this
model by putting more work into the quality of its inputs. In this study,
relatively simple estimates are used for volatility and risk-free rate. The BS
model is restricted to predicting the test set for fair comparison with the
other models. Also, since the output of the B-S model is call option price
but the output of the other models is the ratio of this price over strike price,
the BS model’s predictions were divided by K for comparison. As shown in
Figure 6, for the volatility estimates, wider window sizes yield more accurate
pricing with the BS model. Across all error metrics, the best-performing ver-
sion of the BS model is the one with 90-day historical volatility. This raises
the question of whether testing even wider window sizes would improve the
BS model’s predictions. The best version of the BS model does significantly
better on the SPX ticker than on NDX, as expected. Figure 7 shows a plot of
the 90-day window size volatility BS model’s predictions vs actual values of
the C/K ratio. Overall, this model yields predictions that are 59.29% over-
priced, 23.72% under-priced, and 16.98% correctly priced (within 5% margin
of actual C/K value), meaning that its main weakness is overpricing calls.
Although, as mentioned in section 3, it may be beneficial to test narrower
ranges for the ’correctly priced’ margin.
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7 MLP Model

For the MLP models, as well as the XGBoost, TDNN, and RNN models, the
same set of features is used as inputs. Namely, past underlying prices divided
by strike price S/K, strike price K, time-to-maturity (T − t), risk-free rate r,
and all six historic volatility estimates. The target for all of these models is
the ratio of call option price over strike price C/K. All the MLP architectures
tested have 10 neurons in the input layer (to match the number of features)
and a single neuron in the output layer to produce the predictions. The
Adam optimizer with MSE loss function is used for training. The MSE loss
function has the following form:

1

N

N∑
i=1

(pi − ai)
2 (44)

where pi and ai are the ith predicted and actual C/K values respectively. Ad-
ditionally, an early stopping criterion based on validation loss not decreasing
for 10 epochs (restoring best weights from before stopping) is used to pre-
vent overfitting. All variants of the model were trained for 100 epochs, and
all combinations of the following architectures and parameters (respectively)
were tested: { neurons = [32, 64, 128, 256], layers = [2, 3, 4]}, {activations =
[’relu’, ’tanh’, ’sigmoid’], learning rates = [0.00008, 0.0001, 0.00015, 0.0005]}.

The best-performing MLP model has 3 layers (excluding input and out-
put layers) of 64 neurons, each with tanh activations throughout and a learn-
ing rate of 0.00008. It is trained for 100 epochs with the same early stopping
criterion as mentioned before, after which it is fit on the test set to yield
predictions. Figure 9 shows the best MLP model’s training and validation
loss over epochs. As evident in the plot, the validation loss fluctuates a lot
towards the end of training, so it may be beneficial to train for longer with a
larger patience for early stopping. Despite this, as seen in Figure 10, the best
MLP model’s predictions for C/K fit the actual values much more tightly,
and it does not have such a weakness with overpricing as the B-S model,
with much more even proportions of prediction below and above the actual
values. But, for some reason, it seems to struggle with calls that have larger
values of this ratio. Specifically, it tends to under-price these calls more than
ones with a lower value of this ratio. In fact, the best MLP model yields
27.59% overpriced, 44.21% under-priced, and 28.20% correctly priced calls.
As expected, the MLP model also does better on the SPX ticker than on
NDX. As shown in Figure 12, which shows the predictions and actual values
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across time, the B-S model struggles more toward the end of the test set. As
shown in Figure 13, the best MLP model also has slightly worse performance
towards the end of the test set, but this difference is much less noticeable
than for the B-S model. In fact, as shown in Figure 14, the best MLP model
did better than the best B-S model across all error metrics.

The simplest potential improvement to the MLP model is adding dropout
(or Gaussian dropout) or 11/12 regularization, which has not been imple-
mented yet. Batch/layer normalization or various weight initializations, such
as Xavier or He initialization, could also improve the training. The swish,
GELU (both shown in figure 15), SwiGLU activations or some adaptive ac-
tivation functions could be tested as well. Also, it could be beneficial to test
MLP architectures with different activations in different layers, as the same
activation was used in all layers when testing different activations for this
project. However, the potential improvement that could yield the biggest
difference in performance would be to add GRU (gated recurrent unit) or
LSTM layers to handle the temporal dependence in the data, which is dis-
cussed in section 10. Finally, as done in [37], the final output layer could
have an exponential function to ensure the predicted values are positive since
C/K values cannot be below 0.

8 XGBoost Model

XGBoost stands for extreme gradient boosting, and it combines lots of
weaker learners (decision trees) into a strong learner. When used for pre-
diction/regression, decision trees work by systematically breaking down the
dataset into smaller and more specific subsets, which starts at the root of
the tree. The root node encompasses the entire dataset, representing the
initial, undivided data. The algorithm then engages in feature selection for
splitting, where it identifies a particular feature and a specific point on that
feature to bifurcate the data into two segments, as shown in Figure 16. This
decision is guided by the goal of minimizing mean squared error in the case
of a continuous target variable. Following this, branches are created. The
dataset is divided into two groups, each determined by the selected feature
and split point, leading to the formation of two new nodes. This step marks
the initial separation of the data based on distinct feature values and the de-
termined cut-off value. The process of recursive splitting then continues, and
this methodology of splitting is applied repeatedly to each resulting branch.
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The algorithm selects the features and split points that contribute to the
largest reduction in the variance of the target variable within these newly
formed subsets. An important aspect of this process is the stopping criteria.
The division of data continues until the maximum tree depth is reached, but
other alternatives for the stopping criteria exist. Prediction within a decision
tree is executed at the leaf nodes. Each leaf node is responsible for making a
prediction, typically calculated as the mean of the feature values of the ob-
servations grouped under that node. When a new data point is introduced
for prediction, it ’moves’ down the tree, following the paths determined by
its feature values, until it reaches a leaf node. The mean target value of this
final node is then used as the predicted value.

As mentioned, XGBoost grows each tree up to the specified maximum
depth, and then the trees are pruned back to their optimal size. XGBoost
uses bagging (bootstrap aggregating) and boosting to reduce errors caused
by variance and bias, respectively. Bagging is training each tree on dif-
ferent random subsets of the data and then using a weighted sum of the
individual tree predictions for the overall prediction, as shown in Figure 17.
Boosting is adding each tree sequentially to correct errors made by previ-
ously added trees. Gradient boosting minimizes the loss function by adding
the trees using a gradient-descent-like procedure. The XGBoost implemen-
tation used has many parameters that were not tested, such as subsample
and colsample_by_tree, both of which are built in ways of reducing over-
fitting. As described in the documentation, subsample specifies the fraction
of the training data to be randomly sampled for each tree, and colsam-
ple_bytree controls the fraction of features to be randomly sampled for each
tree. Subsampling occurs once in each boosting iteration for subsample and
once for every tree constructed for colsample_bytree. Both of these param-
eters have default values of 1, which are used in this project. This means
that each tree is trained on all of the data and all of the features. Different
values of the max_depth, n_estimators, alpha, learning rate, and lambda
are tested. The documentation explains the max_depth parameter as the
stopping criterion for the maximum depth of each tree that can be reached,
n_estimators as the number of trees used, and alpha/lambda as the co-
efficients for 11/12 regularization on the weights. It is important to note
that the same random_state is used in the sampling for all XGBoost models
tested to ensure fair comparison, which would be especially crucial if the sub-
sample parameter value were varied from 1. All combinations of the follow-
ing architectures and parameters (respectively) were tested: { max_depth
= [5, 10, 20, 35, 55, 75], n_estimators = [50, 100, 500, 1000, 3000]}, { alpha =
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[0, 1e−5, 1e−4, 1e−3, 1e−2], lambda = [0, 1e−5, 1e−4, 1e−3], learning rates
= [0.1, 0.2, 0.3, 0.4]}. The learning rates range was tweaked with preliminary
training stages before testing all combinations of the aforementioned options.

The best-performing XGBoost model has 50 trees and a max_depth
value of 35 with 0.1, 0.01 and 0.00001 for the learning rate, alpha, and lambda
values, respectively. This model was trained with early stopping based on
validation set error with patience of 10 boosting rounds. Figure 18 shows the
training and validation errors over boosting rounds for this model. As shown
in Figure 19, the best XGBoost model did surprisingly well with its predic-
tions for C/K, fitting the actual values much more tightly than the best BS,
MLP, TDNN, and KAN models. Overall, the best XGBoost model yielded
19.03% overpriced, 38.97% under-priced, and 42.00% correctly priced calls.
Indeed, as shown in Figure 21, this model also handled the later points of the
test set better than both of the previous models. Figure 22 is a table of the
error metrics by model for XGBoost, MLP, and B-S. Also, Figure 27 shows
the error metrics by model for all of the models. It is evident that XGBoost
outperforms the best MLP, TDNN, KAN, and B-S models across all metrics.

9 TDNN Model & Potential Improvements

TDNN stands for Time-Delay Neural Network, and this model is especially
well suited to handle temporal dependence in the data due to its architec-
ture and handling of the features. The architecture of TDNN is characterized
by its hierarchical structure, which employs varying temporal convolutions.
This structure allows each layer in the network to establish connections that
span across outputs from the preceding layer, which improves the network’s
ability to capture temporal dynamics. As the network processes data deeper
into its layers, each unit within the network effectively broadens its ’view’
or ’scope’ of the input sequences. This expanding receptive field allows the
network to incorporate a wider context at each subsequent layer, gaining
an enhanced understanding of temporal patterns within the data. Specif-
ically, in the TDNN, different layers handle different time steps, such as
t − 3, t − 2, t, t + 2, t+ 3. This approach is tailored to address varying tem-
poral dependencies, allowing the network to focus on different segments of
the time series data in a more targeted manner. Another critical feature of
TDNN is the inclusion of statistical pooling (based on mean and standard
deviation) across segments of the input sequence. This pooling mechanism
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serves to summarize the extracted features. By doing so, it ensures that
the relevant characteristics of the sequences are efficiently captured and dis-
tributed throughout the network. The overall architecture of the TDNN
can be summarized as having three main sections: (1) the frame-level lay-
ers, which consist of temporal convolutions; (2) the statistical pooling layer,
which condenses the outputs from the frame-level layers; and (3) the segment
level layers, which further refine these features and include an embedding
layer followed by the prediction layer.

The actual TDNN model is complex and takes excessive tuning. Due
to the time constraints of this project, a simpler TDNN-inspired neural net-
work model is used, with the main differences being the absence of statistical
pooling and a vastly simplified hierarchal structure of temporal convolu-
tions. The current model structure is a series of sequential 1D convolution
layers (Conv1D from Keras) with the same context window and kernel sizes
throughout. All of these Conv1D layers also have padding = ’same’ to ensure
the inputs to layers following the first one are of the appropriate dimension.
Also, all of these layers have the same activations throughout, and each of
them is followed by a dropout regularization layer with the same proportion
throughout (of the preceding layer’s outputs, which are randomly set to 0 ).
After the temporal convolution and dropout layers, the output is flattened
and fed into a dense layer with a single neuron for prediction. Also, the same
reshaping is applied to all the feature sequences. This reshaping must be ap-
plied to the data before it can be fed into the TDNN-like model. Specifically,
the following function was used to perform this data manipulation:

def reshape_data(X, time_steps):

reshaped = []

for i in range(len(X) - time_steps + 1):
reshaped.append(X[i: i + time_steps])

return np.array(reshaped)

This function is designed to transform a two-dimensional array X, rep-
resenting feature time sequences, into a three-dimensional array, with each
element representing a time-windowed sequence, which can then be fed into
the TDNN-like model. The parameter time_steps is an integer that deter-
mines the length of each temporal slice in the reshaped data. The function
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works by iterating through the array X and, for each iteration indexed by i,
it extracts a slice of the data starting from the current index i and extending
time_steps rows ’forward’. This slice includes the current time step as well
as the past #(time_steps - 1) time steps. As a result, each slice forms a
sequence that captures a specific window of time in the data. As mentioned,
the output of this function is a three-dimensional array. This array is es-
sentially a compilation of the extracted slices, where each slice represents
a sequence of data corresponding to a particular feature over the specified
time window.

As with the MLP model, the Adam optimizer and MSE loss functions
were used for training. All combinations of the following architectures and
parameter values were tested: { time_steps = [5, 10, 13, 15, 20], num_layers
( Conv1D ) = [2, 3, 4, 5], kernel_sizes = [3, 5, 10, 12, 15], filters = [10, 16, 32, 64],
activations = [’swish’, ’gelu’, ’relu’, ’tanh’, ’sigmoid’ ]}, { learning rates
= [0.000025, 0.00015, 0.0005, 0.001], dropout rates = [0.03, 0.06, 0.09, 0.13]}.
During the model selection, all models are trained for 75 epochs with early
stopping with a patience of 10. The best TDNN model from our experi-
ments uses time_steps = 12 for the data reshaping and has 3 Conv1D layers
with tanh activations, filters = 12, learning rate = 2.5e − 05, dropout rate
= 0.03, and kernel_size = 3. It was trained for 200 epochs with a patience
of 30 for the early stopping criterion, which was triggered after 175 epochs.
As shown in Figure 23, this model’s validation error fluctuates significantly
throughout the training process, while its training error steadily decreases
with minimal fluctuation. This divergence between the training and valida-
tion errors clearly indicates overfitting, where the model has learned to fit
the noise in the training data rather than generalizing to unseen data. The
large spikes in the validation error suggest that the model is not consistently
performing well on the validation set, further emphasizing the lack of gen-
eralization. Specifically, overfitting is evident from several key signs in the
plot: (1) the validation loss shows considerable variance with sharp increases
at various points, indicating the model’s sensitivity to the validation data;
(2) the training loss decreases monotonically, suggesting that the model is
continuing to learn patterns in the training data even as it becomes increas-
ingly specific to that dataset, and (3) there is a clear divergence between
the smooth, downward trend of the training loss and the erratic behavior of
the validation loss, which reflects the model’s inability to generalize effec-
tively beyond the training set. These observations highlight the importance
of adding regularization techniques such as l1/l2 penalty on the loss or larger
dropout rate to prevent the model from fitting the training data too closely
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and to improve its performance on unseen data. As shown in Figure 24, the
predicted C/K values for the TDNN model fit the actual values well, but the
overpricing issue is apparent. Overall, as shown in Figure 28, it overprices
60.91%, under-prices 18.75%, and correctly prices 20.35% of calls. As shown
in Figure 26, similar to the BS, MLP, and XGBoost models, the TDNN
model does worse towards the end of the test set, but this is less noticeable.
Also, similarly to the other models, the TDNN does slightly better on SPX
than on NDX calls. As shown in Figure 27, this TDNN model does better
than the BS models on all error metrics but slightly worse than MLP.

10 RNN Model & Self-attention Mechanism

In time series regression tasks such as ours, where the objective is to model
and predict temporal dependencies, Recurrent Neural Networks (RNNs)
emerge as a natural choice due to their inherent ability to process sequences
of data. Unlike traditional feedforward networks such as Multilayer Per-
ceptrons (MLPs) or tree-based methods like XGBoost, which handle inputs
in a static manner, RNNs are specifically designed to maintain and utilize
information from previous time steps, thus capturing temporal patterns ef-
fectively. The core advantage of RNNs lies in their use of hidden states that
are passed across time steps, enabling them to model sequential dependen-
cies and handle variable-length input sequences, which MLPs and XGBoost
cannot inherently manage without modification or preprocessing. However,
despite their strengths, RNNs are not without drawbacks. One of the most
critical challenges associated with training RNNs is the vanishing and ex-
ploding gradients problems, where gradients during backpropagation either
diminish to near zero or escalate uncontrollably. This issue, as extensively
discussed in Bengio et al. (1994) [49], severely limits the network’s ability to
learn long-term dependencies, often leading to suboptimal performance and
difficulties during training.

10.2 LSTM - 1997

To mitigate these issues, advanced RNN variants such as Long Short-Term
Memory (LSTM) networks and Gated Recurrent Units (GRUs) have been
developed. LSTM networks, introduced by Hochreiter and Schmidhuber
(1997) [50], incorporate a gating mechanism that controls the flow of infor-
mation, allowing the network to retain important information over extended
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periods and effectively combat the vanishing gradient problem. The key in-
novation in LSTMs is the memory cell state, which is modulated by input,
forget, and output gates, ensuring that the network learns when to forget or
retain information. The following pseudocode outlines a single pass through
the LSTM algorithm:

Single Pass Through LSTM Algorithm

1. Initialize the hidden state ht and cell state Ct for the current time
step t.

2. Compute the Forget Gate:

(a) Concatenate the previous hidden state ht−1 and current input xt.

(b) Multiply the result by the weight matrix Wf and add the bias bf .

(c) Apply the sigmoid activation function to produce the forget gate
output ft.

3. Compute the Input Gate:

(a) Concatenate the previous hidden state ht−1 and current input xt.

(b) Multiply the result by the weight matrix Wi and add the bias bi.

(c) Apply the sigmoid activation function to produce the input gate
output it.

4. Update the Cell State:

(a) Generate the candidate cell state C̃t using the previous hidden
state ht−1 and current input xt.

(b) Multiply the result by the weight matrix WC and add the bias
bC .

(c) Apply the tanh activation function to obtain the candidate cell
state.

(d) Update the cell state Ct by combining the forget gate output ft,
the previous cell state Ct−1, and the input gate output it with the
candidate cell state C̃t.

5. Compute the Output Gate:

(a) Concatenate the previous hidden state ht−1 and current input xt.

(b) Multiply the result by the weight matrix Wo and add the bias bo.
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(c) Apply the sigmoid activation function to produce the output gate
output ot.

6. Compute the Hidden State:

(a) Apply the tanh activation function to the updated cell state Ct.

(b) Multiply the result by the output gate output ot to obtain the
current hidden state ht.

7. Return the hidden state ht and the updated cell state Ct as the output
for time step t.

The LSTM’s gating mechanism can be mathematically stated as follows:

Forget Gate: ft = σ(Wf · [ht−1, xt] + bf ) (45)

Input Gate: it = σ(Wi · [ht−1, xt] + bi) (46)

Output Gate: ot = σ(Wo · [ht−1, xt] + bo) (47)

Cell State: C̃t = tanh(WC · [ht−1, xt] + bC) (48)

Cell Update: Ct = ft · Ct−1 + it · C̃t (49)

Hidden State: ht = ot · tanh(Ct) (50)

10.2 GRU - 2014

Gated Recurrent Units (GRUs), proposed by Cho et al. (2014) [51] [52],
offer a simpler alternative to LSTMs by streamlining the gating mechanism.
Instead of having separate forget and input gates, GRUs combine these into
a single update gate and introduce a reset gate to control the inclusion of
past information. This architecture simplifies the model, making it more
computationally efficient while retaining the ability to capture long-term
dependencies. The following pseudocode outlines the steps involved in a
single pass through the GRU:
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Single Pass Through GRU Algorithm

1. Initialize the hidden state ht for the current time step t.

2. Compute the Reset Gate:

(a) Concatenate the previous hidden state ht−1 and current input xt.

(b) Multiply the result by the weight matrix Wr and add the bias br.

(c) Apply the sigmoid activation function to produce the reset gate
output rt.

3. Compute the Update Gate:

(a) Concatenate the previous hidden state ht−1 and current input xt.

(b) Multiply the result by the weight matrix Wz and add the bias bz.

(c) Apply the sigmoid activation function to produce the update gate
output zt.

4. Compute the Candidate Hidden State:

(a) Apply the reset gate rt to the previous hidden state ht−1 (element-
wise multiplication).

(b) Concatenate the result with the current input xt.

(c) Multiply the result by the weight matrix Wh and add the bias bh.

(d) Apply the tanh activation function to obtain the candidate hidden
state h̃t.

5. Compute the Final Hidden State:

(a) Combine the update gate output zt with the previous hidden state
ht−1 and the candidate hidden state h̃t using an element-wise
multiplication and addition to obtain the final hidden state ht.

6. Return the final hidden state ht as the output for time step t.

The GRU’s gating mechanism can be mathematically described as fol-
lows:

Reset Gate: rt = σ(Wr · [ht−1, xt] + br) (51)

Update Gate: zt = σ(Wz · [ht−1, xt] + bz) (52)
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Candidate Hidden State: h̃t = tanh(Wh · [rt · ht−1, xt] + bh) (53)

Final Hidden State: ht = zt · ht−1 + (1 − zt) · h̃t (54)

In this formulation:
- rt is the reset gate, which determines how much of the past hidden

state ht−1 should be forgotten. - zt is the update gate, which controls how
much of the previous hidden state ht−1 should be retained versus how much
of the new candidate hidden state h̃t should be added. - h̃t is the candidate
hidden state, which is computed using the reset gate-modulated hidden state
rt · ht−1 and the current input xt. - ht is the final hidden state at time step
t, which combines the old hidden state ht−1 and the new candidate hidden
state h̃t based on the values of the update gate zt. These equations and the
corresponding pseudocode outline the full operation of a GRU cell, which
effectively manages information flow and retains long-term dependencies in
the sequence data.

10.3 Model Selection

Given the advantages of both LSTM and GRU architectures, we were mo-
tivated to test various combinations of these layers to determine the most
effective architecture for our time series regression task. To prepare the data
for RNN training, it was necessary to reshape the input data into sequences,
ensuring that no future data was introduced into the past. This was accom-
plished using the following code:

# Function to reshape the data based on timesteps
# without introducing future data

def reshape_data(data, timesteps):
samples = data.shape[0] - timesteps
reshaped_data=np.zeros((samples,timesteps,data.shape[1]))
for i in range(samples):

reshaped_data[i] = data[i:i + timesteps]
return reshaped_data

# Reshape target variable y to match the number
# of samples in the reshaped X

def reshape_targets(y, timesteps):
return y[timesteps:]
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We systematically tested all combinations of the following hyperparame-
ters: timesteps_list = [3, 7, 12, 17, 25], activations = [’tanh’,
’relu’, ’sigmoid’], neurons = [16, 32, 64, 128], and learning_rates
= [0.000025, 0.00019, 0.00045, 0.0013, 0.0045, 0.021]. Each model
was trained over 100 epochs with early stopping and a patience of 20, using
the Adam optimizer with a Mean Squared Error (MSE) loss function. After
preliminary testing, we selected a dropout rate of 0.023, which showed consis-
tent performance within a tested range of 1-35%. The following architectures
were evaluated:

# Model architectures
architectures = [

# 3-layer architecture for LSTM only
(’LSTM’, ’LSTM’, ’LSTM’),
# 3-layer architecture for GRU only
(’GRU’, ’GRU’, ’GRU’),
# Specific 4-layer combinations for LSTM and GRU
(’LSTM’, ’GRU’, ’LSTM’, ’GRU’),
(’LSTM’, ’GRU’, ’GRU’, ’LSTM’),
(’GRU’, ’LSTM’, ’GRU’, ’LSTM’),
(’GRU’, ’LSTM’, ’LSTM’, ’GRU’),
(’LSTM’, ’LSTM’, ’GRU’, ’GRU’),
(’GRU’, ’GRU’, ’LSTM’, ’LSTM’),
# Specific 5-layer combinations for LSTM and GRU
(’LSTM’, ’GRU’, ’LSTM’, ’GRU’, ’LSTM’),
(’GRU’, ’LSTM’, ’GRU’, ’LSTM’, ’GRU’) ]

The best-performing architecture from our experiments is a hybrid recurrent
neural network (RNN) combining both Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) layers, specifically configured in the se-
quence (’LSTM’, ’GRU’, ’LSTM’, ’GRU’, ’LSTM’). This architecture is se-
lected by testing all combinations of the parameters and architectures as
described above. The specific hyperparameter values used are: timestep =
12, activation = tanh, neurons = 32, learning_rate = 0.000097, and
dropout_rate = 0.023. The activation function across all layers was tanh,
which is known for its smooth gradient properties, thus helping to mitigate
vanishing gradient issues that can occur during backpropagation through
time. Each recurrent layer was composed of 16 neurons, striking a bal-
ance between model complexity and computational efficiency. Following the
model selection stage, we trained the best model for 250 epochs with early

34



stopping and a patience of 30 epochs. This approach allowed the network
to reach its optimal performance without overfitting, as the early stopping
mechanism halted training once the validation loss ceased to improve sig-
nificantly. The combination of LSTM and GRU layers in this architecture
seems to provide the model with an enhanced capacity to learn and retain
both short-term and long-term dependencies. This model does better than
the BS, MLP, and TDNN on all error metrics. Despite the already impressive
results of this model, we discuss adding a simple self-attention mechanism
in the following section before comparing it fully to all models.

10.4 Attention Mechanism & Results

We incorporate attention within the best-performing LSTM/GRU RNN ar-
chitecture to enhance the model’s ability to capture temporal dependencies
and important patterns in the data. Our attention mechanism is inspired by
the scaled dot-product attention used in transformers, tailored to suit RNNs
[46]. In this implementation, da represents the attention dimensionality,
which is the number of features used in the attention mechanism equivalent
to the ’neurons’ parameter in our code. Given an input sequence represented
by the hidden states H ∈ RT ×da , where T is the sequence length and da is
the dimensionality of the hidden states, the attention mechanism first com-
putes query Q, key K, and value V matrices as linear transformations of
H:

Q = HWQ, K = HWK , V = HWV (55)

where WQ,WK ,WV ∈ Rda×da are learnable weight matrices, with da = 16.
The attention scores are computed using the scaled dot-product, followed by
the application of the softmax activation function to ensure the scores are
normalized:

A = softmax
(
QK⊤
√
da

)
(56)

The softmax function is defined as:

softmax(zi) =
ezi∑
j e

zj
(57)

This step ensures that the attention scores sum to one, allowing them to
effectively weigh the contributions of different input positions. The resulting
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attention matrix A is applied to the value matrix to produce the attention
output:

O = AV (58)

In our implementation, the attention mechanism is integrated into each RNN
layer, allowing it to dynamically focus on salient features across different
time steps. After obtaining the attention output, we concatenate it with the
original RNN output, resulting in a more informative feature representation:

Oconcat = concatenate([O,H]) (59)

To further enhance the model’s performance, we apply the ‘tanh‘ activation
function after each RNN layer:

tanh(z) =
ez − e−z

ez + e−z
(60)

This activation function helps stabilize the learning process by maintaining
gradients within a manageable range. Additionally, a dropout layer is ap-
plied after each RNN and attention mechanism to prevent overfitting and
improve generalization. By dynamically weighting these features, the atten-
tion mechanism helps the model to capture nuanced market dynamics and
improve generalization to unseen data [47, 48]. In our experiments, the afore-
mentioned best model enhanced with this simple self-attention mechanism
performed very well and did better than all other models on all error metrics.
This model was trained for 100 epochs with early stopping and patience of
30. As shown in Figure 33, this model’s validation error fluctuates a lot at
the start and throughout the 80 epochs before early stopping is triggered. Its
training error almost does not fluctuate at all and just decreases quickly. As
shown in Figure 31, the predicted C/K values for this model fit the actual
values very well overall, and they provide the tightest fit around the true
values of all models. Overall, it overprices 17.94%, under-prices 34.01%, and
correctly prices 48.05% of calls. As shown in Figure 32, similar to the other
models, the best RNN does worse towards the end of the test set, but this
is not as noticeable as for the other models. Also, similarly to the other
models, it does slightly better on SPX than on NDX calls.
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11 KAN Model & Kolmogorov-Arnold Representa-
tion Theorem

Kolmogorov-Arnold Networks (KANs) represent an innovative neural net-
work architecture that leverages the Kolmogorov-Arnold Representation The-
orem to approximate multivariate functions through a systematic composi-
tion of univariate functions. This approach, as outlined in a recent study
by Liu et al. [53], marks a significant departure from traditional feedfor-
ward neural networks. This study reinvigorated the academic community’s
attention to KANs. Instead of relying on fixed activation functions, KANs
employ layers based on splines or orthogonal polynomials. These spline or
polynomial-based layers are particularly adept at capturing nonlinearities
in data, which makes them a powerful tool for function approximation. In
traditional feedforward neural networks, nonlinearities are typically intro-
duced through activation functions like ReLU or sigmoid, applied element-
wise to the outputs of linear transformations. In contrast, KANs capture
these nonlinearities by constructing layers that apply splines or orthogonal
polynomials to the inputs. This approach allows the network to approximate
complex functions by expanding the input features into a higher-dimensional
space, where nonlinear relationships can be more easily modeled. Training
KANs involves optimizing both the polynomial transformation parameters
and the usual linear transformations. The KAN layers are integrated into
the network architecture in a manner similar to standard dense layers but
perform polynomial transformations followed by linear combinations. Un-
like the original formulation, which uses B-splines [53], we utilize orthogonal
polynomials for these transformations. Additionally, we employ dropout reg-
ularization to mitigate overfitting. KANs can be trained in the same way
as MLPs using stochastic gradient descent or its variants, such as the Adam
optimizer, which is used in this paper with the MSE loss function.

11.1 Kolmogorov-Arnold Representation Theorem

The Kolmogorov-Arnold Representation Theorem provides the theoretical
foundation for KANs. It states that any continuous multivariate function
f : [0, 1]n → R can be represented as a finite composition of continuous
univariate functions and addition. Formally, for any continuous function
f(x1, x2, . . . , xn), there exist continuous functions ϕi : R → R and ψij :
[0, 1] → R such that:
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f(x1, x2, . . . , xn) =
2n+1∑
i=1

ϕi

 n∑
j=1

ψij(xj)

 (61)

This theorem underscores the ability of KANs to approximate any con-
tinuous multivariate function by systematically constructing the network’s
architecture using the specified univariate transformations. Additionally, one
of the key advantages of KANs lies in their inherent interpretability, which
is particularly valuable in the domain of scientific machine learning, as high-
lighted by Liu et al. in their paper. Unlike traditional neural networks
that often operate as "black boxes," KANs maintain a clear mathematical
structure that aligns closely with the functional forms encountered in vari-
ous scientific disciplines [53]. This transparency allows researchers to better
understand and trust the model’s predictions, as each layer and transforma-
tion within a KAN has a clear and interpretable role. This makes KANs
an attractive choice for applications where understanding the underlying re-
lationships in the data is as important as the predictive performance itself
[53]. However, this aspect of KAN is not explored in our study and is left
for future work.

11.2 KAN as a Feedforward Neural Network

Unlike the original approach detailed in [53], which employs B-splines for ac-
tivation functions, our implementation utilizes orthogonal polynomials such
as Legendre, Chebyshev, Bessel, and Laguerre polynomials. This decision
was motivated by the powerful approximation properties of these polyno-
mials and their ability to capture nonlinearities effectively. In the context
of Kolmogorov-Arnold Networks (KANs) functioning as feedforward neural
networks, the input x0 undergoes a sequence of transformations through
KAN layers. Each KAN layer applies a transformation using orthogonal
polynomials to a tanh-normalized version of the input. The transformation
applied by the l-th layer (for l between 1 and L inclusive) is denoted by
ϕ(l)(x), and the output of this layer is mathematically expressed as:

z(l) = ϕ(l)
(
tanh

(
ω(l)z(l−1) + b(l)

))
(62)

where z(0) = x0 is the input to the network, ω(l) is the weight matrix used
in the linear combination, b(l) is the bias vector, and ϕ(l) represents the

38



transformation involving orthogonal polynomials. The final output of the
network, representing the prediction ŷ, is given by:

ŷ = ϕ(L)
(
tanh

(
ω(L)z(L−1) + b(L)

))
(63)

where L is the total number of layers in the network.

Hence, our method utilizes orthogonal polynomials applied to tanh-normalized
linear combinations of the input values. The tanh function ensures that the
input remains within the stable range [−1, 1], which is critical for maintain-
ing the stability and accuracy of polynomial computations, especially when
higher-degree polynomials are used. Each KAN layer is defined by a spe-
cific number of neurons, which determines the dimensionality of the output
for that layer. This output dimension, often referred to as the width of
the layer, significantly influences the network’s capacity to model complex
functions. Larger numbers of neurons should allow the network to capture
more intricate patterns, enhancing its ability to approximate highly non-
linear functions. In the transformation ϕ(l)(x) at the l-th layer, the input
x = tanh

(
ω(l)z(l−1) + b(l)

)
is processed by applying orthogonal polynomi-

als of the specified degrees. For instance, using Legendre polynomials, the
transformation can be expressed as:

ϕ(l)(x) =

Dl∑
n=0

W (l)
n · Lgn(x) (64)

where Lgn(x) represents the Legendre polynomial of degree n applied to the
tanh-normalized input, Dl is the largest degree of the layer, and W (l)

n is the
weight matrix for the l-th layer with dimensions input_dim×output_dim×
(degree + 1).

The polynomial coefficients in the weight matrix W
(l)
n for each layer are

initialized using a normal distribution with a mean of 0 and a standard
deviation that is inversely proportional to the product of the input dimension
and the degree of the polynomial. Specifically, the elements ofW (l) are drawn
from:

W
(l)
ij ∼ N

(
0,

1

input_dim × degree

)
(65)

where input_dim is the dimension of the input to the layer, and degree is
the degree of the polynomial used in that layer. This initialization strategy
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is designed to prevent the coefficients from becoming too large or too small,
thereby avoiding issues such as vanishing or exploding gradients. Further-
more, dropout is applied after each KAN layer as a regularization technique
to prevent overfitting. During training, dropout randomly sets a fraction of
the output neurons to zero, forcing the network to learn more robust fea-
tures that are not overly reliant on any single neuron. This enhances the
generalization capability of the KAN model.

Hence, the entire KAN model with L layers and Legendre polynomials can
be expressed as:

ŷ =

DL∑
nL=0

W (L)
nL

· LgnL

tanh

ω(L)

DL−1∑
nL−1=0

W (L−1)
nL−1

·

LgnL−1

(
tanh

(
ω(L−1)[· · · ] + b(L−1)

))
+ b(L)

))
(66)

where the notation [· · · ] represents the sequential application of transforma-
tions through the inner layers l = 1, 2, . . . , L − 2, and each layer applies its
corresponding orthogonal polynomial transformation ϕ(l) as described above.
Further condensing the transformations, we can write ϵ

(l)
nl to represent the

combined W (l)
nl · Lgnl

(tanh(·)) operation:

ŷ =

DL∑
nL=0

ϵ(L)
nL

ω(L)

DL−1∑
nL−1=0

ϵ(L−1)
nL−1

(
ω(L−1)[· · · ] + b(L−1)

)
+ b(L)

 (67)

where ϵ
(l)
nl denotes the combined operation at each layer l, effectively encap-

sulating the polynomial transformation and tanh.
The entire KAN model can be concisely expressed in tensor notation as:

ŷ = W (L) · Φ(L)
(
tanh

(
ω(L)W (L−1)·

Φ(L−1)
(
tanh

(
ω(L−1)[· · · ] + b(L−1)

))
+ b(L)

))
(68)

where Φ(l)() is the vector of polynomial transformations applied at the l-th
layer, W (l) is the weight matrix used for the polynomial transformation, ω(l)

is the weight matrix used for the linear combination, and b(l) is the bias
vector for the l-th layer. The tensor contraction implicitly sums over the
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polynomial degrees and neurons in each layer. Further concisely, we can
express the tanh and polynomial transformations as a single operation:

ŷ =W (L) ·Ψ(L)
(
ω(L)W (L−1) · Ψ(L−1)

(
ω(L−1)[· · · ] + b(L−1)

)
+ b(L)

)
(69)

where Ψ(l)() = Φ(l) (tanh ()) represents the combined tanh and polynomial
transformation applied for the nth degree at the l-th layer. Additionaly, we
can combine W (l) · Ψ(l)() = Θ(l) () to get:

ŷ = Θ(L)
(
ω(L)Θ(L−1)

(
ω(L−1)[· · · ] + b(L−1)

)
+ b(L)

)
(70)

This can be compared to the same equation for an MLP with L layers:

ŷ = σ(L)
(
ω(L) · σ(L−1)

(
ω(L−1)[· · · ] + b(L−1)

)
+ b(L)

)
(71)

where σ(l) represents the activation function applied at the l-th layer. Our
experiments for the KAN models are carried out using PyTorch, where we
implement custom KAN layers to compute the output based on the recur-
rence relations of the chosen orthogonal polynomials. The architecture of
each KAN layer is characterized by the number of neurons it contains, which
defines the output size of the layer and plays a critical role in determining the
overall model complexity. All the KAN architectures tested have 10 neurons
in the input layer (to match the number of features) and a single neuron in
the output layer to produce the predictions.

11.4 Recursive Definitions of Orthogonal Polynomials

Figure 39 shows plots of the first seven polynomials for the various families
of orthogonal polynomials in our study. In our implementation, we employed
the following recursive definitions:

Chebyshev Polynomials of the Second Kind

C0(x) = 1 (72)
C1(x) = 2x (73)

Cn+1(x) = 2xCn(x) − Cn−1(x) (74)

Legendre Polynomials

Lg0(x) = 1 (75)
Lg1(x) = x (76)

(n+ 1)Lgn+1(x) = (2n+ 1)xLgn(x) − nLgn−1(x) (77)
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Bessel Polynomials

B0(x) = 1 (78)
B1(x) = x+ 1 (79)
Bn(x) = (2n− 1)xBn−1(x) +Bn−2(x) (80)

Laguerre Polynomials

L0(x) = 1 (81)
L1(x) = 1 − x (82)

Lk+1(x) =
(2k + 1 − x)Lk(x) − kLk−1(x)

k + 1
(83)

These recursive formulations were the simplest to implement the KAN layers.
However, using these recursive definitions is not the most computationally
efficient method, as using some of the series or closed-form expressions for
the polynomials could be quicker. Moreover, it would be prudent to test
the alternative of using min-max normalization instead of tanh to get the
polynomials to the [-1, 1] range. Below is an example of how a Legendre
KAN layer is implemented in our framework:

class LegendreKANLayer(nn.Module):
def __init__(self, input_dim, output_dim, degree):

super(LegendreKANLayer, self).__init__()
self.inputdim = input_dim
self.outdim = output_dim
self.degree = degree
self.legendre_coeffs = nn.Parameter(

torch.empty(input_dim, output_dim, degree + 1))
nn.init.normal_(self.legendre_coeffs, mean=0.0,

std=1 / (input_dim * (degree + 1)))

def forward(self, x):
x = torch.reshape(x, (-1, self.inputdim))
x = torch.tanh(x)
legendre = torch.ones(x.shape[0], self.inputdim,

self.degree + 1, device=x.device)
legendre[:, :, 0] = 1
if self.degree > 0:

legendre[:, :, 1] = x
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for n in range(2, self.degree + 1):
legendre[:,:,n]=((2 * (n-1)+1)/(n)) * x * \

legendre[:,:,n-1].clone()- \
((n-1)/(n)) * legendre[:,:,n-2].clone()

y = torch.einsum(’bid,iod->bo’, legendre, \
self.legendre_coeffs)

y = y.view(-1, self.outdim)
return y

This custom layer generates the KAN transformation for each layer based on
the Legendre polynomials, while similar classes handle the other orthogonal
polynomials. In [53], the network uses B-splines for the activation functions
with additional grid extension mechanisms to adjust the grid dynamically
during training. However, in our implementation, we rely purely on the
intrinsic properties of the orthogonal polynomials, which provide stability
and efficiency without the need for grid adjustments. In future work, it
would be prudent to test whether combining layers of different polynomials
increases performance. Also, from our experiments, it is clear that our KANs
would benefit significantly from more regularization, which could be in the
form of an l1 or l2 penalty on the loss function since dropout alone is not
enough.

11.3 KAN Best Model Selection and Testing

In our study, an extensive model selection process was conducted to iden-
tify the best KAN architecture for our predictive task. We systematically
varied several hyperparameters, including the type of orthogonal polynomial
used in the KAN layers, the number of neurons per layer (16, 32, 64), the
number of KAN layers (2 to 4), the learning rates (0.000055 to 0.02), and
the degrees of the polynomials (1 to 7). The KANs were trained using the
Adam optimizer with a Mean Squared Error (MSE) loss function, as with
the other models. In the best model selection, each model was trained for 75
epochs, with early stopping implemented (patience of 25 epochs) to prevent
overfitting. We used four types of KAN layers (Legendre, Chebyshev of the
Second Kind, Bessel, and Laguerre), systematically testing all combinations
of polynomial degrees and layers. The best model was identified based on
the validation error. Our systematic exploration of these combinations al-
lows us to evaluate the effectiveness of different configurations in capturing
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the nonlinear relationships inherent in the data, as well as to identify the
optimal model architecture. In our experiments, the best KAN model had
the following configuration: [’kan_layer’: Cheby2KANLayer, ’neurons’: 64,
’layers’: 3, ’learning_rate’: 0.00029, ’degree_combination’: [2, 5, 4] ] and
performed very well. In fact, it does better than the BS, MLP, and TDNN
on all error metrics, as shown in Figure 27. This model was trained for
100 epochs with early stopping and patience of 30 and a dropout of 0.09. As
shown in Figure 37, this model’s validation error fluctuates a lot but steadily
decreases over time, and its training error is much more stable and also goes
down steadily over epochs. As shown in Figure 35, the predicted C/K values
for this model fit the actual values very well. Overall, it overprices 21.42%,
under-prices 44.06%, and correctly prices 34.52% of calls. As shown in Figure
36, similarly to the MLP, TDNN, XGBoost, and RNN models, this model
does worse towards the end of the test set.

12 Evaluation & Results

As can be seen in Figure 27, which is a table of error metrics by model,
the best-performing model across all error metrics was the LSM-GRU hy-
brid RNN model with attention. However, all the other models also did
significantly better than the B-S model. Although TDNN did significantly
better than BS, it was the second worst model, and even our simple MLP
did slightly better on all error metrics. This is likely because we did not
implement a full hierarchy of varying temporal convolutions as intended in
the original TDNN architecture. As can be seen in Figure 28, which is a
table of over/under/correctly priced proportions, the RNN and the TDNN
models have the lowest and largest proportions of overpriced calls, respec-
tively. Moreover, the RNN and the B-S models have the largest and lowest
proportions of correctly priced calls, respectively. Finally, the TDNN and
MLP models have the lowest and largest proportions of under-priced calls,
respectively. Interestingly, although the RNN model is the best, it has more
of an issue with underpricing than the TDNN and BS models. As shown
in Figure 29, all models perform better on SPX than NDX calls in terms
of correctly priced %. The difference in performance for the two tickers is
smallest for the KAN model. The RNN, XGBoost, TDNN, and MLP mod-
els all overprice more on NDX than on SPX calls, but the opposite is true
for the BS and KAN models. The RNN, TDNN, and XGBoost models all
underprice more on SPX than on NDX calls, but the opposite is true for the
BS, MLP, and KAN models.
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As expected, Figure 30 shows that all models do better on ITM than on
ATM calls (in terms of % correctly priced). But, unexpectedly, all models do
better on ATM than on OTM calls, which may be because the range around
the value of 1 for the ATM category is too wide. Also, all models have larger
% overpriced than under-priced for the ATM moneyness category. The MLP
and B-S models display a higher percentage of overpriced than underpriced
options for the ITM category, whereas the other models exhibit the oppo-
site trend, with a greater percentage of underpriced than overpriced options
for ITM calls. Furthermore, all models aside from the MLP have a higher
percentage of overpriced than underpriced options for OTM calls. Given
that some of the errors between the models are complementary, exhibiting
opposite percentages of overpriced and underpriced options across certain
moneyness categories, it may be beneficial to explore ensembling approaches
to leverage these complementary strengths.

13 Future Work

To advance this research, we plan to finalize the implementation of the Time-
Delay Neural Network (TDNN) by incorporating a carefully designed hier-
archy of temporal convolutions. Following this, we will integrate several
enhancements into the MLP, KAN, and RNN models, including the appli-
cation of alternative regularization techniques, the implementation of batch
and layer normalization, and the evaluation of alternative activation func-
tions such as Swish and GELU. To further improve the KAN and MLP
models, we will explore the impact of integrating LSTM or Gated Recurrent
Unit (GRU) layers and attention mechanisms. Additionally, we will im-
plement the explicit formula definitions for orthogonal polynomials, which
should enhance the computational efficiency of the KANs. We also plan to
experiment with multi-head attention as an alternative to the current self-
attention mechanism employed in our models. Another aspect of this study
we will tweak further is the margin for correctly priced options and the ATM
range. We want to test whether narrowing both may yield a better compar-
ison across models. Subsequent to these adjustments, we intend to expand
the feature set by incorporating volume, skewness, and kurtosis and adapt
all models to account for put options in addition to call options by leveraging
put-call parity. Moreover, we hope to extend the analysis to include other
financial indices and investigate the potential benefits of applying smooth-
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ing techniques to the historical volatility and interest rate estimates. We
also plan to compare our models to Heston stochastic volatility and other
extensions of the BS model by discretizing the SDEs and pricing our call
options via Monte Carlo simulation, which facilitates the comparison of our
existing models to an alternative pricing method that is widely used in the
industry and academia. Another direction we want to explore is to check
which models capture the volatility smile best and compare this to the BS
model’s inability to capture it. Moreover, we want to investigate the specific
polynomials and coefficients used in the KAN model for the final predictions,
leveraging the interpretability of KANs.

In addition to the improvements discussed, we plan to explore alterna-
tive supervised learning model architectures for this task. One promising
direction involves the use of selective state space models (SSMs), particu-
larly Mamba [54], and its variants—Mamba-2 [55], DyGMamba [56], and
Mamba-2-Hybrid [57]. Mamba is a novel architecture designed to capture
temporal dependencies in data. It integrates selective state space models into
its framework, allowing the model to dynamically propagate or forget infor-
mation based on the sequence length dimension and input content, leading
to significant improvements in efficiency and performance, especially on long
sequences [54]. Building on Mamba, Mamba-2 introduces a structured state
space model (SSM) that unifies the theoretical connections between SSMs
and variants of attention mechanisms. This refinement allows Mamba-2 to
generalize well across multiple tasks while achieving linear scaling in se-
quence length. Furthermore, Mamba-2’s core architecture has been shown
to outperform Transformers of equivalent size and complexity, with signifi-
cant efficiency gains [55]. DyGMamba extends this by incorporating dynamic
temporal graphs into the SSM framework. This allows for efficient modeling
of long-term temporal dependencies on continuous-time dynamic graphs, ef-
fectively capturing intricate temporal patterns that emerge over extended pe-
riods. DyGMamba achieves state-of-the-art performance on temporal graph
learning tasks, combining computational efficiency with powerful temporal
representation learning [56].

These models have demonstrated a 5x increase in throughput over Trans-
formers while maintaining state-of-the-art performance across various modal-
ities, including language, audio, and genomics [54]. However, to the best of
our knowledge, they have not been explored for financial time series in the
context of option pricing, although other state space models like Hidden-
Markov models (HMMs) have been. Mamba and its variants offer promising
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avenues for future research, and we plan to rigorously evaluate their per-
formance on our task, comparing them with the existing models to deter-
mine their effectiveness in capturing complex financial time-series patterns.
Furthermore, we will explore Physics-Informed Neural Networks (PINNs),
given that the option pricing problem can be framed as learning the solu-
tion to a partial differential equation (PDE) from noisy data. This approach
could provide additional insights and improved accuracy in modeling finan-
cial derivatives. Also, we plan to test CatBoost as an alternative gradient-
boosting decision tree model since it has been shown to consistently out-
perform XGBoost for time series regression tasks. Finally, we plan to test
the performance of a KAN-Capsule-Net as a novel architecture for this task.
This is an architecture inspired by Hinton’s CapsNet but with KAN lay-
ers with orthogonal polynomials instead of MLP blocks. Capsule Networks
(CapsNets) are a type of neural network architecture aiming to better cap-
ture spatial/temporal hierarchies and relationships between features using
"capsules" composed of small groups of neurons. Hinton et al. proposed
that the key advantage of CapsNets is their ability to dynamically route
information between capsules, allowing the network to model part-whole re-
lationships more effectively than traditional ANNs or convolutional neural
networks (CNNs) [58].

Appendix: Best KAN Model Equations

In our experiments, the best KAN has the following configuration:
[’kan_layer’: Cheby2KANLayer, ’neurons’: 64, ’layers’: 3,
’learning_rate’: 0.00029, ’degree_combination’: [2, 5, 4]].
The specific equations for this model are outlined below, with the entire
network being represented as:

ŷ =

D3∑
n3=0

W (3)
n3

· Cn3

(
tanh

(
ω(3)
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W (2)
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(
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W (1)
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(
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)) (84)

where each layer applies its corresponding Chebyshev polynomial transfor-
mation Ci(·) as described in the recurrence relation formula.

Now, let’s write out the layer transformations explicitly:
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For L = 3 and D3 = 4:
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For L = 2 and D2 = 5:
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Finally, for L = 1 and D1 = 2:

z(1) =W
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0 · 1+

W
(1)
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tanh

(
ω(1) · z(0) + b(1)

))
(87)

Let’s substitute the explicit forms of the Chebyshev polynomials of the sec-
ond kind into the network equations, assuming L = 3, D1 = 2, D2 = 5, and
D3 = 4. Here are the equations for the Chebyshev polynomials of the second
kind up to the fifth degree with input x:

C0(x) = 1 (88)
C1(x) = 2x (89)

C2(x) = 4x2 − 1 (90)

C3(x) = 8x3 − 4x (91)

C4(x) = 16x4 − 12x2 + 1 (92)

C5(x) = 32x5 − 32x3 + 6x (93)
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For L = 3 and D3 = 4:
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Now, for L = 2 and D2 = 5:
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Finally, for L = 1 and D1 = 2:
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This expanded expression shows how the KAN model with Chebyshev poly-
nomials of the second kind incorporates transformations of different de-
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grees, with coefficients and transformations applied sequentially through the
network layers. The transformation is expanded using explicit polynomial
terms, and the contributions of each polynomial are clearly shown.

Parameter Count:
For each layer l:

• Polynomial Weights: (input_dim × output_dim × (degree + 1))

• Linear Combination Weights: (output_dim × output_dim)

• Biases: output_dim

- Input Layer (10 Inputs to 64 Neurons):

• Weights: 10 × 64 = 640 parameters.

• Biases: 64 parameters.

Total for Input Layer: 640 + 64 = 704 parameters.

- Layer 1 (D1 = 2):

• Chebyshev Polynomial Weights: 64 × 64 × 3 = 12288 parameters.

• Linear Combination Weights: 64 × 64 = 4096 parameters.

• Biases: 64 parameters.

Total for Layer 1: 12288 + 4096 + 64 = 16448 parameters.

- Layer 2 (D2 = 5):

• Chebyshev Polynomial Weights: 64 × 64 × 6 = 24576 parameters.

• Linear Combination Weights: 64 × 64 = 4096 parameters.

• Biases: 64 parameters.

Total for Layer 2: 24576 + 4096 + 64 = 28736 parameters.

- Layer 3 (D3 = 4):

• Chebyshev Polynomial Weights: 64 × 64 × 5 = 20480 parameters.

• Linear Combination Weights: 64 × 64 = 4096 parameters.
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• Biases: 64 parameters.

Total for Layer 3: 20480 + 4096 + 64 = 24640 parameters.

- Output Layer (64 Neurons to 1 Output):

• Weights: 64 × 1 = 64 parameters.

• Biases: 1 parameter.

Total for Output Layer: 64 + 1 = 65 parameters.

Total Parameter Count for the KAN Model: 704 + 16448 + 28736 +
24640 + 65 = 70593 parameters.

Comparison to a standard 3-layer MLP with 64 Neurons per Layer:

• Layer 1 (Input to First Hidden Layer): 10×64+64 = 704 parameters.

• Layer 2 (First to Second Hidden Layer): 64× 64 + 64 = 4160 parame-
ters.

• Layer 3 (Second to Third Hidden Layer): 64 × 64 + 64 = 4160 param-
eters.

• Layer 4 (Third Hidden Layer to Output): 64× 1+ 1 = 65 parameters.

Total for the MLP: 704 + 4160 + 4160 + 65 = 9089 parameters.

Therefore, our three-layer KAN model with Chebyshev polynomials has
70593 − 9089 = 61504 more parameters compared to a standard three-layer
MLP with the same number of neurons in each layer and the same input and
output layers. Hence, for 3 layers and 64 neurons, our KAN has more than
7.5 as many parameters as a standard MLP with 3 layers and 64 neurons.

Figures

• Figure 1: Risk-Free Rate vs Time
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• Figure 2: Historic Volatilities by Ticker for Different Window Size
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• Figure 3: Log Price Returns Distribution
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• Figure 4: Average Price and Proportion for Moneyness Category by
Ticker

Moneyness_Category
Average Price $ ATM (0.95-1.05) 568.028975 132.819948

ITM (>1.05) 1596.283873 447.234934
Proportion OTM (<0.95) 144.466523 30.375881

ATM (0.95-1.05) 0.318382 0.382268
ITM (>1.05) 0.247259 0.301388

OTM (<0.95) 0.434359 0.316343

• Figure 5: Average Price and Proportion for Moneyness Category by
Time to Expiration

Expiry_Category
Moneyness_Category 60 − 180 < 60 > 180

Average Price $ ATM (0.95-1.05) 264.520889 184.481992 700.696291
ITM (>1.05) 731.065316 819.329338 1304.859530

Proportion OTM (<0.95) 57.828998 12.396391 259.054764
ATM (0.95-1.05) 0.110135 0.178742 0.065338

ITM (>1.05) 0.115554 0.096874 0.065193
OTM (<0.95) 0.110588 0.162889 0.094687

• Figure 6: Error Metrics for B-S Model with Different Volatility Esti-
mates

Yol. Windowys
Efror Metrics on
Teft-fet

MSE (6 d.p.) RMSE (6 d.p.) MAE (6 d.p.)

BS w. 20-day
window vol. 0.003528 0.059396 0.022639

BS w. 30-day
window vol. 0.003451 0.058743 0.021894

BS w. 40-day
window vol. 0.003375 0.058091 0.020700

BS w. 50-day
window vol. 0.003306 0.057499 0.019714

BS w. 65-day
window vol. 0.003228 0.056814 0.019096

BS w. 90-day
window vol. 0.003142 0.056056 0.018677
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• Figure 7: Predicted vs Actual C/K for Best B-S Model

• Figure 8: Error Distribution for Best B-S Model
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• Figure 9: Training & Validation Loss Over Epochs for Best MLP Model

• Figure 10: Predicted vs Actual C/K for Best MLP Model

58



• Figure 11: Error Distribution for Best MLP Model

• Figure 12: Actual & Best B-S Model C/K Predictions vs Time
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• Figure 13: Actual & Best MLP Model C/K Predictions vs Time

• Figure 14: Error Metrics for Best MLP & B-S Models

Error Metrics-> MSE (6 d.p.) RMSE (6 d.p.) MAE (6 d.p.)
90d-vol. BS Model
(Best) 0.003142 0.056056 0.018677

Best MLP Model 0.000056 0.007449 0.005483

• Figure 15: Activation Functions (ReLU, Swish, Tanh, GELU)
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• Figure 16: Decision Tree for Prediction ([59])

• Figure 17: XGBoost Prediction ([42])
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• Figure 18: Training & Validation Loss Over Epochs for Best XGBoost
Model

• Figure 19: Predicted vs Actual C/K for Best XGBoost Model
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• Figure 20: Error Distribution for Best XGBoost Model

• Figure 21: Actual & Best XGBoost Model C/K Predictions vs Time
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• Figure 22: Error Metrics for Best MLP, XGBoost, & B-S Models

Error Metrics-> MSE (6 d.p.) RMSE (6 d.p.) MAE (6 d.p.)
90d-vol. BS Model (Best) 0.003142 0.056056 0.018677
Best MLP Model 0.000056 0.007449 0.005483
Best XGBoost Model 0.000025 0.005021 0.003660

• Figure 23: Training & Validation Loss Over Epochs for Best TDNN
Model
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• Figure 24: Predicted vs Actual C/K for Best TDNN Model

• Figure 25: Error Distribution for Best TDNN Model
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• Figure 26: Actual & Best TDNN Model C/K Predictions vs Time

• Figure 27: Error Metrics by Model
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Error Metrics -> MSE (6 d.p.) RMSE (6 d.p.) MAE (6 d.p.)
(1) Best RNN 0.000021 0.004583 0.003301
(2) Best XGBoost 0.000025 0.005021 0.003660
(3) Best KAN 0.000039 0.006249 0.004425
(4) Best MLP 0.000056 0.007449 0.005483
(5) Best TDNN 0.000059 0.007682 0.005699
(6) Best BS 0.003142 0.056056 0.018677

• Figure 28: Total Percentages of Underpriced and Overpriced Options
by Model

Total Percentages of
Underpriced and
Overpriced Options by Model

BS TDNN MLP KAN XGBoost RNN

Overpriced 59.29% 60.91% 27.59% 21.42% 19.03% 17.94%

Correctly Priced 16.98% 20.35% 28.20% 34.52% 42.00% 48.05%

Underpriced 23.72% 18.75% 44.21% 44.06% 38.97% 34.01%

• Figure 29: Overpriced & Underpriced Percentages by Ticker for Each
Model

67



Underpriced
Percentages by
Ticker for Each
Model

Underpriced
%

Correctly
Priced % Overpriced %

Best RNN: – – –
NDX 32.18 45.96 21.86
SPX 36.02 50.44 13.54

Best XGBoost: – – –
NDX 30.23 40.50 29.27
SPX 39.01 44.65 16.34

Best KAN: – – –
NDX 47.02 33.59 19.39
SPX 41.06 35.00 23.94

Best MLP: – – –
NDX 45.06 28.03 26.91
SPX 43.43 32.21 24.36

Best TDNN: – – –
NDX 17.13 18.85 64.02
SPX 18.93 22.08 58.99

Best B-S: – – –
NDX 29.57 14.42 56.01
SPX 22.43 16.56 61.59

• Figure 30: Percentages of Overpriced & Underpriced by Moneyness
Category for Each Model
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Percentages of
Overpriced and
Underpriced
Options by
Moneyness
Category for Each
Model

Underpriced
%

Correctly
Priced % Overpriced %

Best RNN: – – –
ATM 32.10 29.23 38.67
ITM 36.02 54.55 9.43
OTM 29.78 15.10 55.12

Best XGBoost: – – –
ATM 29.86 24.67 45.47
ITM 13.46 74.61 11.93
OTM 11.09 5.41 83.50

Best KAN: – – –
ATM 34.71 22.83 42.46
ITM 55.20 61.12 12.68
OTM 27.29 8.50 64.21

Best MLP: – – –
ATM 15.66 14.43 69.91
ITM 17.76 57.82 24.42
OTM 57.62 4.14 38.24

Best TDNN: – – –
ATM 34.71 20.83 44.46
ITM 27.29 61.12 11.59
OTM 31.32 4.91 63.77

Best B-S: – – –
ATM 31.07 10.32 58.61
ITM 16.02 55.58 28.40
OTM 22.68 0.69 76.63

• Figure 31: Actual & Best RNN Model C/K Predictions
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• Figure 32: Actual & Best RNN Model C/K Predictions vs Time

• Figure 33: Training & Validation Loss Over Epochs for Best RNN
Model
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• Figure 34: Error Distribution for Best RNN Model

• Figure 35: Actual & Best KAN Model C/K Predictions
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• Figure 36: Actual & Best KAN Model C/K Predictions vs Time

• Figure 37: Training & Validation Loss Over Epochs for Best KAN
Model
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• Figure 38: Error Distribution for Best KAN Model

• Figure 39: First 7 Orthogonal Polynomials for Besel, Laguerre, Legen-
dre, and Chebyshev of 2nd Kind
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