# From Experiments to In-Service: Encoding Structural Damage via Speaker Recognition

### COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Recognition Technologies, Inc.

klh2136@columbia.edu, beigi@recotechnologies.com, rb68@columbia.edu

#### **2. Vibration Features** 1. Motivation Structural vibrations are measured via accelerometers. Due to the similarity in medium **In-Service Structures** Lab Experiments between speech and structural vibrations, we capture potential damage trajectories via Linear-Frequency Cepstral Coefficients (LFCCs). Excitation **Pier lowering Tendon/Anchor** damage Damaged Bridge (Ambient Vibration) Undamaged Bridge (Ambient Vibration) Tacoma Narrows Bridge





<sup>1</sup>Department of Civil Engineering and Engineering Mechanics, Columbia University, <sup>2</sup>Recognition Technologies



#### Steel Frames Concrete Columns Toy Models

Kyle Hom<sup>1</sup>, Homayoon Beigi<sup>1,2</sup>, Raimondo Betti<sup>1</sup>

Damage within in-service structures is difficult to observe before failure. Experimentation is wellstudied and convenient to examine, but structures in-service are not easily-accessed for testing. • Experimental: 9 Datasets (from LANL, IASC-ASCE, NEES) spanning 60 damage scenarios • In-Service: Z24 Bridge Benchmark with 17 discrete damage scenarios.

Can we detect hidden damage within **in-service** structures via vibration patterns learned from **experimental** testing?

## **3. Architecture**





As convolution in time-domain becomes addition in cepstral-domain, forces stimulating the bridge are isolated from changes in structural dynamics, just as spoken utterances are distinguished from **vocal tract dynamics**.

### **Speech features** (LFCCs) applied for identification of structural damage



We modify the *x*-vector time-delay neural network (TDNN) architecture to capture LFCC trajectories across an accelerometer waveform. We test various layer mechanisms at TDNN2 to capture damage over wider contexts. Statistics of the TDNN1-5 outputs over the waveform are calculated at the stats layer, and an **output classification head** determines the damage case from experiments. Embeddings at TDNN6 yield a latent-space representation of damage.

#### **TDNN** trained on experiments provide **embeddings** as damage representations

We use a PLDA model to project embeddings from the **TDNN trained on experiments** to potential damage classes observed from an in-service structure. We observe sorting of damage heirarchies, such as structure types in experiments and incremental damage progression in the Z24 Bridge.

# PLDA model projects experimental representation to real in-service damage behavior

### 5. Results & Discussion

PLDA Equal-Error Rate for Evaluation Sets

Best-Performing Models for Z24 Forced Tests



We use log-likelihood ratio (LLR) to score accelerometer waveforms belonging to damage cases and equal-error rate (EER) to assess performance of experiments-to-experiments and experiments-to-Z24.classification. We assess over architecture permutations and application of spectral augmentation, with TDNN+Convolution yielding our bestgeneralizing model. Localization of Z24 damage over the sensor array is also observed for effects of damage.



#### **Tendon Failure**

 Speaker recognition pipeline provides framework to learn structural damage Generalization and localization of damage behaviors possible from experiments to in-service structures





80mm

4 Anchors